297 research outputs found
Phase transitions in biological membranes
Native membranes of biological cells display melting transitions of their
lipids at a temperature of 10-20 degrees below body temperature. Such
transitions can be observed in various bacterial cells, in nerves, in cancer
cells, but also in lung surfactant. It seems as if the presence of transitions
slightly below physiological temperature is a generic property of most cells.
They are important because they influence many physical properties of the
membranes. At the transition temperature, membranes display a larger
permeability that is accompanied by ion-channel-like phenomena even in the
complete absence of proteins. Membranes are softer, which implies that
phenomena such as endocytosis and exocytosis are facilitated. Mechanical signal
propagation phenomena related to nerve pulses are strongly enhanced. The
position of transitions can be affected by changes in temperature, pressure, pH
and salt concentration or by the presence of anesthetics. Thus, even at
physiological temperature, these transitions are of relevance. There position
and thereby the physical properties of the membrane can be controlled by
changes in the intensive thermodynamic variables. Here, we review some of the
experimental findings and the thermodynamics that describes the control of the
membrane function.Comment: 23 pages, 15 figure
Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells
BACKGROUND: It has been proposed that high insulin levels may cause delayed lung development in the fetuses of diabetic mothers. A key event in lung development is the production of adequate amounts of pulmonary surfactant. Insulin inhibits the expression of surfactant protein A (SP-A), the major surfactant-associated protein, in lung epithelial cells. In the present study, we investigated the signal transduction pathways involved in insulin inhibition of SP-A gene expression. METHODS: H441 cells, a human lung adenocarcinoma cell line, or human fetal lung explants were incubated with or without insulin. Transcription run-on assays were used to determine SP-A gene transcription rates. Northern blot analysis was used to examine the effect of various signal transduction inhibitors on SP-A gene expression. Immunoblot analysis was used to evaluate the levels and phosphorylation states of signal transduction protein kinases. RESULTS: Insulin decreased SP-A gene transcription in human lung epithelial cells within 1 hour. Insulin did not affect p44/42 mitogen-activated protein kinase (MAPK) phosphorylation and the insulin inhibition of SP-A mRNA levels was not affected by PD98059, an inhibitor of the p44/42 MAPK pathway. In contrast, insulin increased p70 S6 kinase Thr389 phosphorylation within 15 minutes. Wortmannin or LY294002, both inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase), or rapamycin, an inhibitor of the activation of p70 S6 kinase, a downstream effector in the PI 3-kinase pathway, abolished or attenuated the insulin-induced inhibition of SP-A mRNA levels. CONCLUSION: Insulin inhibition of SP-A gene expression in lung epithelial cells probably occurs via the rapamycin-sensitive PI 3-kinase signaling pathway
First Observation of and Decays
We have observed new channels for decays with an in the final
state. We study 3-prong tau decays, using the and
\eta\to 3\piz decay modes and 1-prong decays with two \piz's using the
channel. The measured branching fractions are
\B(\tau^{-}\to \pi^{-}\pi^{-}\pi^{+}\eta\nu_{\tau})
=(3.4^{+0.6}_{-0.5}\pm0.6)\times10^{-4} and \B(\tau^{-}\to
\pi^{-}2\piz\eta\nu_{\tau}
=(1.4\pm0.6\pm0.3)\times10^{-4}. We observe clear evidence for
substructure and measure \B(\tau^{-}\to
f_1\pi^{-}\nu_{\tau})=(5.8^{+1.4}_{-1.3}\pm1.8)\times10^{-4}. We have also
searched for production and obtain 90% CL upper limits
\B(\tau^{-}\to \pi^{-}\eta'\nu_\tau)<7.4\times10^{-5} and \B(\tau^{-}\to
\pi^{-}\piz\eta'\nu_\tau)<8.0\times10^{-5}.Comment: 11 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Search for the Decays B^0 -> D^{(*)+} D^{(*)-}
Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays
B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one
candidate signal event, with an expected background of 0.022 +/- 0.011 events.
This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) =
(5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0
-> D^{*+} D^{*-}) D^{*\pm} D^\mp and
B^0 -> D^+ D^-, no significant excess of signal above the expected background
level is seen, and we calculate the 90% CL upper limits on the branching
fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+
D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
Production in Two-Photon Interactions at CLEO
Using the CLEO detector at the Cornell storage ring, CESR, we study
the two-photon production of , making the first
observation of . We present the
cross-section for as a function of
the center of mass energy and compare it to that predicted by
the quark-diquark model.Comment: 10 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Observation of the Decay
Using e+e- annihilation data collected by the CLEO~II detector at CESR, we
have observed the decay Ds+ to omega pi+. This final state may be produced
through the annihilation decay of the Ds+, or through final state interactions.
We find a branching ratio of [Gamma(Ds+ to omega pi+)/Gamma(Ds+ to eta
pi+)]=0.16+-0.04+-0.03, where the first error is statistical and the second is
systematic.Comment: 9 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Healthcare Staff Wellbeing, Burnout, and Patient Safety: A Systematic Review
Objective
To determine whether there is an association between healthcare professionals’ wellbeing and burnout, with patient safety.
Design
Systematic research review.
Data Sources
PsychInfo (1806 to July 2015), Medline (1946 to July 2015), Embase (1947 to July 2015) and Scopus (1823 to July 2015) were searched, along with reference lists of eligible articles.
Eligibility Criteria for Selecting Studies
Quantitative, empirical studies that included i) either a measure of wellbeing or burnout, and ii) patient safety, in healthcare staff populations.
Results
Forty-six studies were identified. Sixteen out of the 27 studies that measured wellbeing found a significant correlation between poor wellbeing and worse patient safety, with six additional studies finding an association with some but not all scales used, and one study finding a significant association but in the opposite direction to the majority of studies. Twenty-one out of the 30 studies that measured burnout found a significant association between burnout and patient safety, whilst a further four studies found an association between one or more (but not all) subscales of the burnout measures employed, and patient safety.
Conclusions
Poor wellbeing and moderate to high levels of burnout are associated, in the majority of studies reviewed, with poor patient safety outcomes such as medical errors, however the lack of prospective studies reduces the ability to determine causality. Further prospective studies, research in primary care, conducted within the UK, and a clearer definition of healthcare staff wellbeing are needed.
Implications
This review illustrates the need for healthcare organisations to consider improving employees’ mental health as well as creating safer work environments when planning interventions to improve patient safety
- …