830 research outputs found

    A Possible IIB Superstring Matrix Model with Euler Characteristic and a Double Scaling Limit

    Get PDF
    We show that a recently proposed Yang-Mills matrix model with an auxiliary field, which is a candidate for a non-perturbative description of type IIB superstrings, captures the Euler characteristic of moduli space of Riemann surfaces. This happens at the saddle point for the Yang-Mills field. It turns out that the large-n limit in this matrix model corresponds to a double scaling limit in the Penner model.Comment: 5 pages, LaTe

    Matrix string states in pure 2d Yang Mills theories

    Get PDF
    We quantize pure 2d Yang-Mills theory on a torus in the gauge where the field strength is diagonal. Because of the topological obstructions to a global smooth diagonalization, we find string-like states in the spectrum similar to the ones introduced by various authors in Matrix string theory. We write explicitly the partition function, which generalizes the one already known in the literature, and we discuss the role of these states in preserving modular invariance. Some speculations are presented about the interpretation of 2d Yang-Mills theory as a Matrix string theory.Comment: Latex file of 38 pages plus 6 eps figures. A note and few references added, figures improve

    Matrix strings from generalized Yang-Mills theory on arbitrary Riemann surfaces

    Get PDF
    We quantize pure 2d Yang-Mills theory on an arbitrary Riemann surface in the gauge where the field strength is diagonal. Twisted sectors originate, as in Matrix string theory, from permutations of the eigenvalues around homotopically non-trivial loops. These sectors, that must be discarded in the usual quantization due to divergences occurring when two eigenvalues coincide, can be consistently kept if one modifies the action by introducing a coupling of the field strength to the space-time curvature. This leads to a generalized Yang-Mills theory whose action reduces to the usual one in the limit of zero curvature. After integrating over the non-diagonal components of the gauge fields, the theory becomes a free string theory (sum over unbranched coverings) with a U(1) gauge theory on the world-sheet. This is shown to be equivalent to a lattice theory with a gauge group which is the semi-direct product of S_N and U(1)^N. By using well known results on the statistics of coverings, the partition function on arbitrary Riemann surfaces and the kernel functions on surfaces with boundaries are calculated. Extensions to include branch points and non-abelian groups on the world-sheet are briefly commented upon.Comment: Latex2e, 29 pages, 2 .eps figure

    Branched Coverings and Interacting Matrix Strings in Two Dimensions

    Full text link
    We construct the lattice gauge theory of the group G_N, the semidirect product of the permutation group S_N with U(1)^N, on an arbitrary Riemann surface. This theory describes the branched coverings of a two-dimensional target surface by strings carrying a U(1) gauge field on the world sheet. These are the non-supersymmetric Matrix Strings that arise in the unitary gauge quantization of a generalized two-dimensional Yang-Mills theory. By classifying the irreducible representations of G_N, we give the most general formulation of the lattice gauge theory of G_N, which includes arbitrary branching points on the world sheet and describes the splitting and joining of strings.Comment: LaTeX2e, 25 pages, 4 figure

    Generalized two-dimensional Yang-Mills theory is a matrix string theory

    Get PDF
    We consider two-dimensional Yang-Mills theories on arbitrary Riemann surfaces. We introduce a generalized Yang-Mills action, which coincides with the ordinary one on flat surfaces but differs from it in its coupling to two-dimensional gravity. The quantization of this theory in the unitary gauge can be consistently performed taking into account all the topological sectors arising from the gauge-fixing procedure. The resulting theory is naturally interpreted as a Matrix String Theory, that is as a theory of covering maps from a two-dimensional world-sheet to the target Riemann surface.Comment: LaTeX, 10 pages, uses espcrc2.sty. Presented by A. D'adda at the Third Meeting on Constrained Dynamics and Quantum Gravity, Villasimius (Sardinia, Italy) September 13-17, 1999; to appear in the proceeding

    String Spectrum of 1+1-Dimensional Large N QCD with Adjoint Matter

    Get PDF
    We propose gauging matrix models of string theory to eliminate unwanted non-singlet states. To this end we perform a discretised light-cone quantisation of large N gauge theory in 1+1 dimensions, with scalar or fermionic matter fields transforming in the adjoint representation of SU(N). The entire spectrum consists of bosonic and fermionic closed-string excitations, which are free as N tends to infinity. We analyze the general features of such bound states as a function of the cut-off and the gauge coupling, obtaining good convergence for the case of adjoint fermions. We discuss possible extensions of the model and the search for new non-critical string theories.Comment: 20 pages (7 figures available from authors as postscipt files), PUPT-134

    Loop Space Hamiltonians And Field Theory Of Non-Critical Strings

    Full text link
    We consider the loop space representation of multi-matrix models. Explaining the origin of a time variable through stochastic quantization we make contact with recent proposals of Ishibashi and Kawai. We demonstrate how collective field theory with its loop space interactions generates a field theory of non-critical strings.Comment: 23 pages; phyzztex; Misprints corrected and Tex fonts adde

    Scattering States and Symmetries in the Matrix Model and Two Dimensional String Theory

    Get PDF
    We study the correspondence between the linear matrix model and the interacting nonlinear string theory. Starting from the simple matrix harmonic oscillator states, we derive in a direct way scattering amplitudes of 2-dimensional strings, exhibiting the nonlinear equation generating arbitrary N-point tree amplitudes. An even closer connection between the matrix model and the conformal string theory is seen in studies of the symmetry algebra of the system.Comment: 25 pages (Phyzzx), Brown-HET-87

    Calculating the Rest Tension for a Polymer of String Bits

    Full text link
    We explore the application of approximation schemes from many body physics, including the Hartree-Fock method and random phase approximation (RPA), to the problem of analyzing the low energy excitations of a polymer chain made up of bosonic string bits. We accordingly obtain an expression for the rest tension T0T_0 of the bosonic relativistic string in terms of the parameters characterizing the microscopic string bit dynamics. We first derive an exact connection between the string tension and a certain correlation function of the many-body string bit system. This connection is made for an arbitrary interaction potential between string bits and relies on an exact dipole sum rule. We then review an earlier calculation by Goldstone of the low energy excitations of a polymer chain using RPA. We assess the accuracy of the RPA by calculating the first order corrections. For this purpose we specialize to the unique scale invariant potential, namely an attractive delta function potential in two (transverse) dimensions. We find that the corrections are large, and discuss a method for summing the large terms. The corrections to this improved RPA are roughly 15\%.Comment: 44 pages, phyzzx, psfig required, Univ. of Florida preprint, UFIFT-HEP-94
    corecore