12,683 research outputs found
Field-theory calculation of the electric dipole moment of the neutron and paramagnetic atoms
Electric dipole moments (edms) of bound states that arise from the
constituents having edms are studied with field-theoretic techniques. The
systems treated are the neutron and a set of paramagnetic atoms. In the latter
case it is well known that the atomic edm differs greatly from the electron edm
when the internal electric fields of the atom are taken into account. In the
nonrelativistic limit these fields lead to a complete suppression, but for
heavy atoms large enhancement factors are present. A general bound-state field
theory approach applicable to both the neutron and paramagnetic atoms is set
up. It is applied first to the neutron, treating the quarks as moving freely in
a confining spherical well. It is shown that the effect of internal electric
fields is small in this case. The atomic problem is then revisited using
field-theory techniques in place of the usual Hamiltonian methods, and the
atomic enhancement factor is shown to be consistent with previous calculations.
Possible application of bound-state techniques to other sources of the neutron
edm is discussed.Comment: 21 pages, 5 figure
Fly-by-light flight control system technology development plan
The results of a four-month, phased effort to develop a Fly-by-Light Technology Development Plan are documented. The technical shortfalls for each phase were identified and a development plan to bridge the technical gap was developed. The production configuration was defined for a 757-type airplane, but it is suggested that the demonstration flight be conducted on the NASA Transport Systems Research Vehicle. The modifications required and verification and validation issues are delineated in this report. A detailed schedule for the phased introduction of fly-by-light system components has been generated. It is concluded that a fiber-optics program would contribute significantly toward developing the required state of readiness that will make a fly-by-light control system not only cost effective but reliable without mitigating the weight and high-energy radio frequency related benefits
Effect of prolonged space flight on cardiac function and dimensions
Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space
Low-energy Mott-Hubbard excitations in LaMnO_3 probed by optical ellipsometry
We present a comprehensive ellipsometric study of an untwinned, nearly
stoichiometric LaMnO_3 crystal in the spectral range 1.2-6.0 eV at temperatures
20 K < T < 300 K. The complex dielectric response along the b and c axes of the
Pbnm orthorhombic unit cell, \epsilon^b(\nu) and \epsilon^c(\nu), is highly
anisotropic over the spectral range covered in the experiment. The difference
between \epsilon^b(\nu) and \epsilon^c(\nu) increases with decreasing
temperature, and the gradual evolution observed in the paramagnetic state is
strongly enhanced by the onset of A-type antiferromagnetic long-range order at
T_N = 139.6 K. In addition to the temperature changes in the lowest-energy gap
excitation at 2 eV, there are opposite changes observed at higher energy at 4 -
5 eV, appearing on a broad-band background due to the strongly dipole-allowed O
2p -- Mn 3d transition around the charge-transfer energy 4.7 eV. Based on the
observation of a pronounced spectral-weight transfer between low- and
high-energy features upon magnetic ordering, they are assigned to high-spin and
low-spin intersite d^4d^4 - d^3d^5 transitions by Mn electrons. The anisotropy
of the lowest-energy optical band and the spectral weight shifts induced by
antiferromagnetic spin correlations are quantitatively described by an
effective spin-orbital superexchange model. An analysis of the multiplet
structure of the intersite transitions by Mn e_g electrons allowed us to
estimate the effective intra-atomic Coulomb interaction, the Hund exchange
coupling, and the Jahn-Teller splitting energy between e_g orbitals in LaMnO_3.
This study identifies the lowest-energy optical transition at 2 eV as an
intersite d-d transition, whose energy is substantially reduced compared to
that obtained from the bare intra-atomic Coulomb interaction.Comment: 10 pages, 14 figure
- …