17,526 research outputs found
Influence of facemask design on operational performance
Spirometric measurements of oxygen volume and determination of the amount of argon in exhaled breath are used to analyze facemask design efficiency during treadmill walking tests with subjects carrying plastic hoods filled with argon. Facemask leakage measurements established the better performance of a pneumatic seal type mask in comparison with plain seal type masks
Mixed Quantum/Classical Theory of Rotationally and Vibrationally Inelastic Scattering in Space-fixed and Body-fixed Reference Frames
We formulated the mixed quantum/classical theory for rotationally and vibrationally inelastic scattering process in the diatomic molecule + atom system. Two versions of theory are presented, first in the space-fixed and second in the body-fixed reference frame. First version is easy to derive and the resultant equations of motion are transparent, but the state-to-state transition matrix is complex-valued and dense. Such calculations may be computationally demanding for heavier molecules and/or higher temperatures, when the number of accessible channels becomes large. In contrast, the second version of theory requires some tedious derivations and the final equations of motion are rather complicated (not particularly intuitive). However, the state-to-state transitions are driven by real-valued sparse matrixes of much smaller size. Thus, this formulation is the method of choice from the computational point of view, while the space-fixed formulation can serve as a test of the body-fixed equations of motion, and the code. Rigorous numerical tests were carried out for a model system to ensure that all equations, matrixes, and computer codes in both formulations are correct
Superfluid density and condensate fraction in the BCS-BEC crossover regime at finite temperatures
The superfluid density is a fundamental quantity describing the response to a
rotation as well as in two-fluid collisional hydrodynamics. We present
extensive calculations of the superfluid density \rho_s in the BCS-BEC
crossover regime of a uniform superfluid Fermi gas at finite temperatures. We
include strong-coupling or fluctuation effects on these quantities within a
Gaussian approximation. We also incorporate the same fluctuation effects into
the BCS single-particle excitations described by the superfluid order parameter
\Delta and Fermi chemical potential \mu, using the Nozi\`eres and Schmitt-Rink
(NSR) approximation. This treatment is shown to be necessary for consistent
treatment of \rho_s over the entire BCS-BEC crossover. We also calculate the
condensate fraction N_c as a function of the temperature, a quantity which is
quite different from the superfluid density \rho_s. We show that the mean-field
expression for the condensate fraction N_c is a good approximation even in the
strong-coupling BEC regime. Our numerical results show how \rho_s and N_c
depend on temperature, from the weak-coupling BCS region to the BEC region of
tightly-bound Cooper pair molecules. In a companion paper by the authors
(cond-mat/0609187), we derive an equivalent expression for \rho_s from the
thermodynamic potential, which exhibits the role of the pairing fluctuations in
a more explicit manner.Comment: 32 pages, 12 figure
MM and subMM molecular line observations of the southwest lobe of L1551: Evidence of a shell structure
Observations have been made of the southwest outflow lobe of L1551 in several millimeter and submillimeter molecular lines. Maps have been made in the J=3-2 and J=2-1 transitions of CO over areas of 7.5 by 2.5 arc minutes and 5 by 5 arc minutes respectively at UKIRT. More detailed maps have also been made in the J=2-1 CO transition over an area of about 6 by 3.5 arc minutes at the NRAO 12m telescope. Additional observations of the J=4-3 transitions of HCN, HCO(+) abd H(13)CO(+) were made at selected positions. The HC(+) J=4-3 transition was detected at several positions along the outflow axis and at the position of IRS 5. Similarly the HCN J=4-3 transition was detected at the position of IRS 5 and also at a position close to HH29. However, the J=4-3 transition of H(13)CO(+) was bit detected at the position of IRS 5 even through it was observed at the position close to HH29 with a peak corrected antenna temperature of 0.23K at a V(LSR) of 1 km s(-1). The detection of the J=4-3 transitions of both HCO(+) and H(13)CO(+) close to the position of HH29 suggest the presence of very dense gas in this region. LVG analysis of the various molecular lines observed give a kinetic temperature between 10 and 15K and a density from 10(5) to 10(6) cm(-3) at the position of IRS 5 at the ambient cloud velocity. At the position close to HH29 LVG analysis of the CO observations gives a density between 10(3) and 10(4) cm(-3) at a kinetic temperature of 25k for a V(LSR) of 0 km s(-1). To the southwest of HH29 there is a large decrease in both the linewidth and intensity of CO emission. This may be due to the interaction between the outflow and a dense clump of gas which gives rise to HH29. The maps of the CO J=3-2 and CO J=2-1 emission integrated in 3.25 km s intervals show the shell structure postulated by Snell and Schloerb (1985)
Race, Memory, and Historical Responsibility: What Do Southerners Do with a Difficult Past?
Newly emerging, transitional societies –– that is, societies that traded dictatorial or authoritarian rule for some form of open or liberal polity –– face at least three interdependent problems of what is called in legal scholarship and social science “transitional justice”: the first is how (if at all) to hold the old regime’s autocratic, often violence-laden leadership responsible for its wrongdoings while in power; the second is what (if anything) to do with thousands upon thousands of ordinary folk whose participation in, or compliance with, the old regime helped legitimate and thus perpetuate the wrongdoing; and the third task how (if at all) to deal with the victims of the old regime. By situating the American South in the global context of the need of newly democratizing societies for transitional justice, we explore how the South’s similarities with and differences from other such societies have shaped the timing and character of its peoples’ post-Jim Crow era restorative justice and racial reconciliation projects, paying particular attention to criminal trials for perpetrators of past crimes, apology, truth and reconciliation-type commissions, and memorialization. We then document the extent of racial inequalities in employment, income, poverty status, and morbidity and mortality, arguing both that past racial injustices result in contemporary racial inequalities and that restorative justice points forward in time--and thus must deal with current inequities –– as well as backward
Single-particle excitations in the BCS-BEC crossover region II: Broad Feshbach resonance
We apply the formulation developed in a recent paper [Y. Ohashi and A.
Griffin, Phys. Rev. A {\bf 72}, 013601, (2005)] for single-particle excitations
in the BCS-BEC crossover to the case of a broad Feshbach resonance. At T=0, we
solve the Bogoliubov-de Gennes coupled equations taking into account a Bose
condensate of bound states (molecules). In the case of a broad resonance, the
density profile , as well as the profile of the superfluid order
parameter , are spatially spread out to the Thomas-Fermi
radius, even in the crossover region. This order parameter
suppresses the effects of low-energy Andreev bound states on the rf-tunneling
current. As a result, the peak energy in the rf-spectrum is found to occur at
an energy equal to the superfluid order parameter at the
center of the trap, in contrast to the case of a narrow resonance, and in
agreement with recent measurements. The LDA is found to give a good
approximation for the rf-tunneling spectrum.Comment: 14 pages, 8 figure
First Results from SPARO: Evidence for Large-Scale Toroidal Magnetic Fields in the Galactic Center
We have observed the linear polarization of 450 micron continuum emission
from the Galactic center, using a new polarimetric detector system that is
operated on a 2 m telescope at the South Pole. The resulting polarization map
extends ~ 170 pc along the Galactic plane and ~ 30 pc in Galactic latitude, and
thus covers a significant fraction of the central molecular zone. Our map shows
that this region is permeated by large-scale toroidal magnetic fields. We
consider our results together with radio observations that show evidence for
poloidal fields in the Galactic center, and with Faraday rotation observations.
We compare all of these observations with the predictions of a magnetodynamic
model for the Galactic center that was proposed in order to explain the
Galactic Center Radio Lobe as a magnetically driven gas outflow. We conclude
that the observations are basically consistent with the model.Comment: 11 pages, 2 figures, 1 table, submitted to ApJ Let
Superfluidity of bosons on a deformable lattice
We study the superfluid properties of a system of interacting bosons on a
lattice which, moreover, are coupled to the vibrational modes of this lattice,
treated here in terms of Einstein phonon model. The ground state corresponds to
two correlated condensates: that of the bosons and that of the phonons. Two
competing effects determine the common collective soundwave-like mode with
sound velocity , arising from gauge symmetry breaking: i) The sound velocity
(corresponding to a weakly interacting Bose system on a rigid lattice) in
the lowest order approximation is reduced due to reduction of the repulsive
boson-boson interaction, arising from the attractive part of phonon mediated
interaction in the static limit. ii) the second order correction to the sound
velocity is enhanced as compared to the one of bosons on a rigid lattice when
the the boson-phonon interaction is switched on due to the retarded nature of
phonon mediated interaction. The overall effect is that the sound velocity is
practically unaffected by the coupling with phonons, indicating the robustness
of the superfluid state. The induction of a coherent state in the phonon
system, driven by the condensation of the bosons could be of experimental
significance, permitting spectroscopic detections of superfluid properties of
the bosons. Our results are based on an extension of the Beliaev - Popov
formalism for a weakly interacting Bose gas on a rigid lattice to that on a
deformable lattice with which it interacts.Comment: 12 pages, 14 figures, to appear in Phys. Rev.
Coherent Tunneling of Atoms from Bose-condensed Gases at Finite Temperatures
Tunneling of atoms between two trapped Bose-condensed gases at finite
temperatures is explored using a many-body linear response tunneling formalism
similar to that used in superconductors. To lowest order, the tunneling
currents can be expressed quite generally in terms of the single-particle
Green's functions of the isolated Bose gases. A coherent first-order tunneling
Josephson current between two atomic Bose-condensates is found, in addition to
coherent and dissipative contributions from second-order
condensate-noncondensate and noncondensate-noncondensate tunneling. Our work is
a generalization of Meier and Zwerger, who recently treated tunneling between
uniform atomic Bose gases. We apply our formalism to the analysis of an
out-coupling experiment induced by light wave fields, using a simple
Bogoliubov-Popov quasiparticle approximation for the trapped Bose gas. For
tunneling into the vacuum, we recover the results of Japha, Choi, Burnett and
Band, who recently pointed out the usefulness of studying the spectrum of
out-coupled atoms. In particular, we show that the small tunneling current of
noncondensate atoms from a trapped Bose gas has a broad spectrum of energies,
with a characteristic structure associated with the Bogoliubov quasiparticle
u^2 and v^2 amplitudes.Comment: 26 pages, 5 figures, minor changes, to appear in PR
- …