2,374 research outputs found

    Wear effects and mechanisms of soot-contaminated automotive lubricants

    Get PDF
    A study has been carried out to investigate the influence of soot-contaminated automotive lubricants in the wear process of a simulated engine valve train contact. Previous research on this topic has been mainly performed from a chemical point of view in fundamental studies, with insufficient relevance to real engine conditions, i.e. load and geometry. This study investigates the conditions under which wear occurs through specimen testing. The objective of the work was to understand the wear mechanisms that occur within the contaminated contact zone, to help in future development of a predictive wear model to assist in the valve-train design process. The effects of soot in lubricants have been tested using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a bath of oil and a steel ball (replicating a valve train contact) is attached to a reciprocating arm. The materials, contact geometry and loading conditions are all related to specific conditions experienced within an engine's valve train. The testing was carried out under various contact conditions, using carbon black as a soot simulant. Wear measurements were taken during the tests and wear scar morphology was studied. The results have revealed how varying lubrication conditions changes the wear rate of engine components and determines the wear mechanism that dominates for specific situations

    Magnetic tomography for lead acid batteries

    Get PDF
    © 2017 The AuthorsThis paper explores the inverse problem approach for finding the current distribution within an electrochemical cell from magnetic field measurements. Current distribution is shown to be a useful measurement for diagnosis of cells and development of cell design. Existing current distribution measurement methods are discussed to provide context and motivation for the work. Magnetic field measurements can be obtained non-invasively and contain information about the current distribution, which is extracted using an appropriate solver. Experimental results are presented which test the effectiveness of a particular inverse problem solver, using both simulated and real magnetic field measurements. The solver presented is based upon one found in literature, but with novel problem-specific modifications. Errors in conductance values in the forward model definition are simulated in order to quantify their effect on solution quality. A modification to the solver is proposed to improve robustness against these model errors. This results in improved solution quality when using real measured data from a resistor-wire model of a cell, and simulated data from a model which more accurately represents the conductance of the cell plate grid and active mass

    Dependence of direct detection signals on the WIMP velocity distribution

    Full text link
    The signals expected in WIMP direct detection experiments depend on the ultra-local dark matter distribution. Observations probe the local density, circular speed and escape speed, while simulations find velocity distributions that deviate significantly from the standard Maxwellian distribution. We calculate the energy, time and direction dependence of the event rate for a range of velocity distributions motivated by recent observations and simulations, and also investigate the uncertainty in the determination of WIMP parameters. The dominant uncertainties are the systematic error in the local circular speed and whether or not the MW has a high density dark disc. In both cases there are substantial changes in the mean differential event rate and the annual modulation signal, and hence exclusion limits and determinations of the WIMP mass. The uncertainty in the shape of the halo velocity distribution is less important, however it leads to a 5% systematic error in the WIMP mass. The detailed direction dependence of the event rate is sensitive to the velocity distribution. However the numbers of events required to detect anisotropy and confirm the median recoil direction do not change substantially.Comment: 21 pages, 7 figures, v2 version to appear in JCAP, minor change

    Tractable Combinations of Global Constraints

    Full text link
    We study the complexity of constraint satisfaction problems involving global constraints, i.e., special-purpose constraints provided by a solver and represented implicitly by a parametrised algorithm. Such constraints are widely used; indeed, they are one of the key reasons for the success of constraint programming in solving real-world problems. Previous work has focused on the development of efficient propagators for individual constraints. In this paper, we identify a new tractable class of constraint problems involving global constraints of unbounded arity. To do so, we combine structural restrictions with the observation that some important types of global constraint do not distinguish between large classes of equivalent solutions.Comment: To appear in proceedings of CP'13, LNCS 8124. arXiv admin note: text overlap with arXiv:1307.179

    Lonely adatoms in space

    Full text link
    There is a close relation between the problems of second layer nucleation in epitaxial crystal growth and chemical surface reactions, such as hydrogen recombination, on interstellar dust grains. In both cases standard rate equation analysis has been found to fail because the process takes place in a confined geometry. Using scaling arguments developed in the context of second layer nucleation, I present a simple derivation of the hydrogen recombination rate for small and large grains. I clarify the reasons for the failure of rate equations for small grains, and point out a logarithmic correction to the reaction rate when the reaction is limited by the desorption of hydrogen atoms (the second order reaction regime)

    General Non-minimal Kinetic coupling to gravity

    Full text link
    We study a new model of scalar field with a general non-minimal kinetic coupling to itself and to the curvature, as a source of dark energy, and analyze the cosmological dynamics of this model and the issue of accelerated expansion. A wide variety of scalar fields and potentials giving rise to power-law expansion have been found. The dynamical equation of state is studied for the two cases, without and with free kinetic term . In the first case, a behavior very close to that of the cosmological constant was found. In the second case, a solution was found, which match the current phenomenology of the dark energy. The model shows a rich variety of dynamical scenarios.Comment: 25 pages, 3 figures; figure added, references adde

    Predicting university performance in psychology: the role of previous performance and discipline-specific knowledge

    Get PDF
    Recent initiatives to enhance retention and widen participation ensure it is crucial to understand the factors that predict students' performance during their undergraduate degree. The present research used Structural Equation Modeling (SEM) to test three separate models that examined the extent to which British Psychology students' A-level entry qualifications predicted: (1) their performance in years 1-3 of their Psychology degree, and (2) their overall degree performance. Students' overall A-level entry qualifications positively predicted performance during their first year and overall degree performance, but negatively predicted their performance during their third year. Additionally, and more specifically, students' A-level entry qualifications in Psychology positively predicted performance in the first year only. Such findings have implications for admissions tutors, as well as for students who have not studied Psychology before but who are considering applying to do so at university

    Cosmic ray electrons and positrons from discrete stochastic sources

    Full text link
    The distances that galactic cosmic ray electrons and positrons can travel are severely limited by energy losses to at most a few kiloparsec, thereby rendering the local spectrum very sensitive to the exact distribution of sources in our galactic neighbourhood. However, due to our ignorance of the exact source distribution, we can only predict the spectrum stochastically. We argue that even in the case of a large number of sources the central limit theorem is not applicable, but that the standard deviation for the flux from a random source is divergent due to a long power law tail of the probability density. Instead, we compute the expectation value and characterise the scatter around it by quantiles of the probability density using a generalised central limit theorem in a fully analytical way. The uncertainty band is asymmetric about the expectation value and can become quite large for TeV energies. In particular, the predicted local spectrum is marginally consistent with the measurements by Fermi-LAT and HESS even without imposing spectral breaks or cut-offs at source. We conclude that this uncertainty has to be properly accounted for when predicting electron fluxes above a few hundred GeV from astrophysical sources.Comment: 16 pages, 8 figures; references and clarifying comment added; to appear in JCA
    • …
    corecore