1,487 research outputs found

    Primordial black hole production due to preheating

    Get PDF
    During the preheating process at the end of inflation the amplification of field fluctuations can lead to the amplification of curvature perturbations. If the curvature perturbations on small scales are sufficiently large, primordial black holes (PBHs) will be overproduced. In this paper we study PBH production in the two-field preheating model with quadratic inflaton potential. We show that for many values of the inflaton mass m, and coupling g, small scale perturbations will be amplified sufficiently, before backreaction can shut off preheating, so that PBHs will be overproduced during the subsequent radiation dominated era.Comment: 5 pages, 3 eps figures. Minor changes to match version to appear in PRD as a rapid communicatio

    Elliptic Calabi-Yau Threefolds with Z_3 x Z_3 Wilson Lines

    Full text link
    A torus fibered Calabi-Yau threefold with first homotopy group Z_3 x Z_3 is constructed as a free quotient of a fiber product of two dP_9 surfaces. Calabi-Yau threefolds of this type admit Z_3 x Z_3 Wilson lines. In conjunction with SU(4) holomorphic vector bundles, such vacua lead to anomaly free, three generation models of particle physics with a right handed neutrino and a U(1)_{B-L} gauge factor, in addition to the SU(3)_C x SU(2)_L x U(1)_Y standard model gauge group. This factor helps to naturally suppress nucleon decay. The moduli space and Dolbeault cohomology of the threefold is also discussed.Comment: 51 pages, 13 figures; v2: references adde

    Complete solution of a constrained tropical optimization problem with application to location analysis

    Full text link
    We present a multidimensional optimization problem that is formulated and solved in the tropical mathematics setting. The problem consists of minimizing a nonlinear objective function defined on vectors over an idempotent semifield by means of a conjugate transposition operator, subject to constraints in the form of linear vector inequalities. A complete direct solution to the problem under fairly general assumptions is given in a compact vector form suitable for both further analysis and practical implementation. We apply the result to solve a multidimensional minimax single facility location problem with Chebyshev distance and with inequality constraints imposed on the feasible location area.Comment: 20 pages, 3 figure

    Intersecting D7-Branes, I5-Branes and Conifolds

    Full text link
    A candidate supergravity solution of intersecting D7-branes with a five-dimensional intersecting domain (an I5-brane) is presented. This displays an enhanced Poincare symmetry and supersymmetry away from the brane cores. We also explore the possibility of a relation between the intersection region of D7-branes and conifolds through F-theory.Comment: 25 pages Typos corrected. Added comment on the mass and probe analysis Version to be published in JHE

    Constraining the primordial spectrum of metric perturbations from gravitino and moduli production

    Get PDF
    We consider the production of gravitinos and moduli fields from quantum vacuum fluctuations induced by the presence of scalar metric perturbations at the end of inflation. We obtain the corresponding occupation numbers, up to first order in perturbation theory, in terms of the power spectrum of the metric perturbations. We compute the limits imposed by nucleosynthesis on the spectral index nsn_s for different models with constant nsn_s. The results show that, in certain cases, such limits can be as strong as ns<1.12n_s<1.12, which is more stringent than those coming from primordial black hole production.Comment: 16 pages, LaTeX, 5 figures. Corrected figures, new references included. Final version to appear in Phys. Rev.

    The Spectra of Heterotic Standard Model Vacua

    Get PDF
    A formalism for determining the massless spectrum of a class of realistic heterotic string vacua is presented. These vacua, which consist of SU(5) holomorphic bundles on torus-fibered Calabi-Yau threefolds with fundamental group Z_2, lead to low energy theories with standard model gauge group (SU(3)_C x SU(2)_L x U(1)_Y)/Z_6 and three families of quarks and leptons. A methodology for determining the sheaf cohomology of these bundles and the representation of Z_2 on each cohomology group is given. Combining these results with the action of a Z_2 Wilson line, we compute, tabulate and discuss the massless spectrum.Comment: 41+1pp, 2 fig

    The Particle Spectrum of Heterotic Compactifications

    Get PDF
    Techniques are presented for computing the cohomology of stable, holomorphic vector bundles over elliptically fibered Calabi-Yau threefolds. These cohomology groups explicitly determine the spectrum of the low energy, four-dimensional theory. Generic points in vector bundle moduli space manifest an identical spectrum. However, it is shown that on subsets of moduli space of co-dimension one or higher, the spectrum can abruptly jump to many different values. Both analytic and numerical data illustrating this phenomenon are presented. This result opens the possibility of tunneling or phase transitions between different particle spectra in the same heterotic compactification. In the course of this discussion, a classification of SU(5) GUT theories within a specific context is presented.Comment: 77 pages, 3 figure

    Heterotic Standard Model Moduli

    Get PDF
    In previous papers, we introduced a heterotic standard model and discussed its basic properties. The Calabi-Yau threefold has, generically, three Kahler and three complex structure moduli. The observable sector of this vacuum has the spectrum of the MSSM with one additional pair of Higgs-Higgs conjugate fields. The hidden sector has no charged matter in the strongly coupled string and only minimal matter for weak coupling. Additionally, the spectrum of both sectors will contain vector bundle moduli. The exact number of such moduli was conjectured to be small, but was not explicitly computed. In this paper, we rectify this and present a formalism for computing the number of vector bundle moduli. Using this formalism, the number of moduli in both the observable and strongly coupled hidden sectors is explicitly calculated.Comment: 28 pages, LaTeX; v2: typos corrected, references added; v3: clarifications, references adde

    High-Tc via electron polar coupling: relation to low-Tc superconductivity and to chiral symmetry in particle physics

    Full text link
    Directional coupling of Thornber-Feynman polarization with the high-Tc ARPES distribution specifies the optimum flatband pseudogap \Delta and mobile localized quasiparticle. This coupling peaks by tuning the statistics and interaction energy to produce stable short-ranged directional pairing that reflects the lattice asymmetry. Analogous energy gap and BCS ratio parameters are identified for low-Tc long-range acoustical phonons and for quark-anti-quark tightly bound chiral pions in particle physics.Comment: 25 pages, 4 figures, accepted for publication in Physica

    SU(4) Instantons on Calabi-Yau Threefolds with Z_2 x Z_2 Fundamental Group

    Full text link
    Structure group SU(4) gauge vacua of both weakly and strongly coupled heterotic superstring theory compactified on torus-fibered Calabi-Yau threefolds Z with Z_2 x Z_2 fundamental group are presented. This is accomplished by constructing invariant, stable, holomorphic rank four vector bundles on the simply connected cover of Z. Such bundles can descend either to Hermite-Yang-Mills instantons on Z or to twisted gauge fields satisfying the Hermite-Yang-Mills equation corrected by a non-trivial flat B-field. It is shown that large families of such instantons satisfy the constraints imposed by particle physics phenomenology. The discrete parameter spaces of those families are presented, as well as a lower bound on the dimension of the continuous moduli of any such vacuum. In conjunction with Z_2 x Z_2 Wilson lines, these SU(4) gauge vacua can lead to standard-like models at low energy with an additional U(1)_{B-L} symmetry. This U(1)_{B-L} symmetry is very helpful in naturally suppressing nucleon decay.Comment: 68 pages, no figure
    • …
    corecore