9,228 research outputs found

    A self-consistent test of Comptonization models using a long BeppoSAX observation of NGC 5548

    Get PDF
    We test accurate models of Comptonization spectra over the high quality data of the BeppoSAX long look at NGC 5548. The data are well represented by a plane parallel corona with an inclination angle of 30∘^{\circ}, a soft photon temperature of 5 eV and a hot plasma temperature and optical depth of kTe≃kT_{\rm e}\simeq 360 keV and τ≃\tau\simeq 0.1, respectively. If energy balance applies, such values suggest that a more ``photon-starved'' geometry (e.g. a hemispheric region) is necessary. The spectral softening detected during a flare, appears to be associated to a decrease of the heating-to-cooling ratio, indicating a geometric and/or energetic modification of the disk plus corona system. The hot plasma temperature derived with the models above is significantly higher than that obtained fitting the same data with a power law plus high energy cut off model for the continuum. This is due to the fact that in anisotropic geometries Comptonization spectra show "intrinsic" curvature which moves the fitted high energy cut-off to higher energies.Comment: 4 pages, 2 figures, to appear in the proceedings of the conference "X-ray Astronomy '99", Bologna, Italy, September 199

    WARP: a WIMP double phase Argon detector

    Full text link
    The WARP programme for dark matter search with a double phase argon detector is presented. In such a detector both excitation and ionization produced by an impinging particle are evaluated by the contemporary measurement of primary scintillation and secondary (proportional) light signal, this latter being produced by extracting and accelerating ionization electrons in the gas phase. The proposed technique, verified on a 2.3 liters prototype, could be used to efficiently discriminate nuclear recoils, induced by WIMP's interactions, and measure their energy spectrum. An overview of the 2.3 liters results and of the proposed 100 liters detector is shown.Comment: Proceeding for IDM200

    Hard X-ray emission from the galaxy cluster A2256

    Get PDF
    After the positive detection by BeppoSAX of hard X-ray radiation up to ~80 keV in the Coma cluster spectrum, we present evidence for nonthermal emission from A2256 in excess of thermal emission at a 4.6sigma confidence level. In addition to this power law component, a second nonthermal component already detected by ASCA could be present in the X-ray spectrum of the cluster, not surprisingly given the complex radio morphology of the cluster central region. The spectral index of the hard tail detected by the PDS onboard BeppoSAX is marginally consistent with that expected by the inverse Compton model. A value of ~0.05 microG is derived for the intracluster magnetic field of the extended radio emission in the northern regions of the cluster, while a higher value of \~0.5 microG could be present in the central radio halo, likely related to the hard tail detected by ASCA.Comment: 10 pages, 2 figures. To appear in ApJ
    • 

    corecore