1,228 research outputs found

    Effects of 9-hour time zone changes on fatigue and circadian rhythms of sleep/wake and core temperature

    Get PDF
    Physiological and psychological disruptions caused by transmeridian flights may affect the ability of flight crews to meet operational demands. To study these effects, 9 Royal Norwegian Airforces P3-Orion crewmembers flew from Norway to California (-9 hr), and back (+9 hr). Rectal temperature, heart rate and wrist activity were recorded every 2 min, fatigue and mood were rated every 2 hr during the waking day, and logs were kept of sleep times and ratings. Subjects also completed 4 personality inventories. The time-zone shifts produced negative changes in mood which persisted longer after westward flights. Sleep quality (subjective and objective) and duration were slightly disrupted (more after eastward flights). The circadian rhythms of sleep/wake and temperature both completed the 9-hr delay by day 5 in California, although temperature adjusted more slowly. The size of the delay shift was significantly correlated with scores on extraversion and achievement need personality scales. Response to the 9-hr advance were more variable. One subject exhibited a 15-hr delay in his temperature rhythm, and an atypical sleep/nap pattern. On average, the sleep/wake cycle (but not the temperature rhythm), completed the 9-hr advance by the end of the study. Both rhythms adapted more slowly after the eastward flight

    Delineation of the dystonia-parkinsonism syndrome locus in Xq13.

    Full text link

    Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures.

    Get PDF
    Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan-cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis-defined CNA signatures are predictive of glycolytic phenotypes, including 18F-fluorodeoxy-glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer-linked metabolic enzymes. A pan-cancer and cross-species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer-driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution

    How brains make decisions

    Full text link
    This chapter, dedicated to the memory of Mino Freund, summarizes the Quantum Decision Theory (QDT) that we have developed in a series of publications since 2008. We formulate a general mathematical scheme of how decisions are taken, using the point of view of psychological and cognitive sciences, without touching physiological aspects. The basic principles of how intelligence acts are discussed. The human brain processes involved in decisions are argued to be principally different from straightforward computer operations. The difference lies in the conscious-subconscious duality of the decision making process and the role of emotions that compete with utility optimization. The most general approach for characterizing the process of decision making, taking into account the conscious-subconscious duality, uses the framework of functional analysis in Hilbert spaces, similarly to that used in the quantum theory of measurements. This does not imply that the brain is a quantum system, but just allows for the simplest and most general extension of classical decision theory. The resulting theory of quantum decision making, based on the rules of quantum measurements, solves all paradoxes of classical decision making, allowing for quantitative predictions that are in excellent agreement with experiments. Finally, we provide a novel application by comparing the predictions of QDT with experiments on the prisoner dilemma game. The developed theory can serve as a guide for creating artificial intelligence acting by quantum rules.Comment: Latex file, 20 pages, 3 figure

    Neuronal pentraxin II is highly upregulated in Parkinson’s disease and a novel component of Lewy bodies

    Get PDF
    Neuronal pentraxin II (NPTX2) is the most highly upregulated gene in the Parkinsonian substantia nigra based on our whole genome expression profiling results. We show here that it is a novel component of Lewy bodies and Lewy neurites in sporadic Parkinson’s disease (PD). NPTX2 is also known as the neuronal activity-regulated protein (Narp), which is secreted and involved in long-term neuronal plasticity. Narp further regulates AMPA receptors which have been found to mediate highly selective non-apoptotic cell death of dopaminergic neurons. NPTX2/Narp is found in close association with alpha-synuclein aggregates in both substantia nigra and cerebral cortex in PD but unlike alpha-synuclein gene expression, which is down-regulated in the Parkinsonian nigra, NPTX2 could represent a driver of the disease process. In view of its profound (>800%) upregulation and its established role in synaptic plasticity as well as dopaminergic nerve cell death, NPTX2 is a very interesting novel player which is likely to be involved in the pathway dysregulation which underlies PD

    Troubling stories of the end of occupy : feminist narratives of betrayal at occupy Glasgow

    Get PDF
    This article offers a feminist take on the question of why Occupy camps closed down, in the form of a narrative analysis of interviews from participants in Occupy Glasgow. In response to the emergence of an activist discourse emphasising the role of external forces in camp closure and the existence of a longer-term legacy in terms of individual and community politicisation, I build here on feminist interventions that point instead to serious internal problems within the camps and thus to a more limited legacy. Interrogating the plotting, characterisation and denouement of interviewee narratives, I show that feminist participants in Occupy Glasgow characterise the trajectory of the camp as a tragedy, attribute responsibility for the camp’s demise to co-campers and sometimes to themselves, and present the outcome of Occupy Glasgow as limited, and in some cases even traumatic. This raises serious questions about the culmination and outcomes of Occupy in Glasgow and more generally, and indicates the extent of the hard work remaining if future mobilisation against neoliberal austerity is to be more inclusive and sustainable. The article closes by considering the theoretical implications for the wider question of why movements come to an end
    • …
    corecore