5 research outputs found

    Type-1 Collagen differentially alters β-catenin accumulation in primary Dupuytren's Disease cord and adjacent palmar fascia cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dupuytren's Disease (DD) is a debilitating contractile fibrosis of the palmar fascia characterised by excess collagen deposition, contractile myofibroblast development, increased Transforming Growth Factor-β levels and β-catenin accumulation. The aim of this study was to determine if a collagen-enriched environment, similar to <it>in vivo </it>conditions, altered β-catenin accumulation by primary DD cells in the presence or absence of Transforming Growth Factor-β.</p> <p>Methods</p> <p>Primary DD and patient matched, phenotypically normal palmar fascia (PF) cells were cultured in the presence or absence of type-1 collagen and Transforming Growth Factor-β1. β-catenin and α-smooth muscle actin levels were assessed by western immunoblotting and immunofluorescence microscopy.</p> <p>Results</p> <p>DD cells display a rapid depletion of cellular β-catenin not evident in patient-matched PF cells. This effect was not evident in either cell type when cultured in the absence of type-1 collagen. Exogenous addition of Transforming Growth Factor-β1 to DD cells in collagen culture negates the loss of β-catenin accumulation. Transforming Growth Factor-β1-induced α-smooth muscle actin, a marker of myofibroblast differentiation, is attenuated by the inclusion of type-1 collagen in cultures of DD and PF cells.</p> <p>Conclusion</p> <p>Our findings implicate type-1 collagen as a previously unrecognized regulator of β-catenin accumulation and a modifier of TGF-β1 signaling specifically in primary DD cells. These data have implications for current treatment modalities as well as the design of <it>in vitro </it>models for research into the molecular mechanisms of DD.</p

    Meta-Analysis of Genome-Wide Association Studies and Network Analysis-Based Integration with Gene Expression Data Identify New Suggestive Loci and Unravel a Wnt-Centric Network Associated with Dupuytren’s Disease

    Get PDF
    Dupuytren´s disease, a fibromatosis of the connective tissue in the palm, is a common complex disease with a strong genetic component. Up to date nine genetic loci have been found to be associated with the disease. Six of these loci contain genes that code for Wnt signalling proteins. In spite of this striking first insight into the genetic factors in Dupuytren´s disease, much of the inherited risk in Dupuytren´s disease still needs to be discovered. The already identified loci jointly explain ~1% of the heritability in this disease. To further elucidate the genetic basis of Dupuytren´s disease, we performed a genome-wide meta-analysis combining three genome-wide association study (GWAS) data sets, comprising 1,580 cases and 4,480 controls. We corroborated all nine previously identified loci, six of these with genome-wide significance (p-value < 5x10-8). In addition, we identified 14 new suggestive loci (p-value < 10−5). Intriguingly, several of these new loci contain genes associated with Wnt signalling and therefore represent excellent candidates for replication. Next, we compared whole-transcriptome data between patient- and control-derived tissue samples and found the Wnt/β-catenin pathway to be the top deregulated pathway in patient samples. We then conducted network and pathway analyses in order to identify protein networks that are enriched for genes highlighted in the GWAS meta-analysis and expression data sets. We found further evidence that the Wnt signalling pathways in conjunction with other pathways may play a critical role in Dupuytren´s disease

    Improving human cancer therapy through the evaluation of pet dogs

    No full text
    corecore