21 research outputs found

    Unexpected high diversity of galling insects in the Amazonian upper canopy: The savanna out there

    Get PDF
    A relatively large number of studies reassert the strong relationship between galling insect diversity and extreme hydric and thermal status in some habitats, and an overall pattern of a greater number of galling species in the understory of scleromorphic vegetation. We compared galling insect diversity in the forest canopy and its relationship with tree richness among upland terra firme, várzea, and igapó floodplains in Amazonia, Brazil. The soils of these forest types have highly different hydric and nutritional status. Overall, we examined the upper layer of 1,091 tree crowns. Galling species richness and abundance were higher in terra firme forests compared to várzea and igapó forests. GLM-ANCOVA models revealed that the number of tree species sampled in each forest type was determinant in the gall-forming insect diversity. The ratio between galling insect richness and number of tree species sampled (GIR/TSS ratio) was higher in the terra firme forest and in seasonally flooded igapó, while the várzea presented the lowest GIR/TSS ratio. In this study, we recorded unprecedented values of galling species diversity and abundance per sampling point. The GIR/TSS ratio from várzea was approximately 2.5 times higher than the highest value of this ratio ever reported in the literature. Based on this fact, we ascertained that várzea and igapó floodplain forests (with lower GIA and GIR), together with the speciose terra firme galling community emerge as the gall diversity apex landscape among all biogeographic regions already investigated. Contrary to expectation, our results also support the "harsh environment hypothesis", and unveil the Amazonian upper canopy as similar to vegetation habitats, hygrothermically stressed environments with temperature at lethal limits and high levels of leaf sclerophylly. © 2014 Julião et al

    Insect galls of Itamonte (Minas Gerais, Brazil): characterization and occurrence

    No full text
    Computer systems that are dependable in the presence of faults are increasingly in demand. Among available fault tolerance mechanisms, software-implemented hardware fault tolerance (SIHFT) is constantly gaining in popularity, because of its cost efficiency and flexibility. Fault tolerance mechanisms are often validated using fault injection, comprising a variety of techniques for introducing faults into a system. Traditional fault injection techniques, however, suffer from a number of drawbacks, notably lack of coverage (impossibility to exhaust all test cases) and the failure to activate enough injected faults. In this paper we present a new approach called symbolic fault injection which is targeted at validation of SIHFT mechanisms and is based on the concept of symbolic execution of programs. It can be seen as the extension of a formal technique for formal program verification that makes it possible to evaluate the consequences of all possible faults (of a certain kind) in given memory locations for all possible system inputs. This makes it possible to formally prove properties of fault tolerance mechanisms. The new method for symbolic fault injection has been prototypically implemented on the basis of an industrial-strength formal verification system and we demonstrate its viability by proving that a CRC implementation detects all possible single bit-flips

    Diversity of gall-inducing insects in the high altitude wetland forests in Pernambuco, Northeastern Brazil

    No full text
    We report on the richness of galling insects in the altitudinal wetland forests of Pernambuco State, Northeastern Brazil. We found 80 distinct types of insect galls on 49 species of host plants belonging to 28 families and 35 genera. Most of the galled plant species belong to Nyctaginaceae, Fabaceae, Meliaceae, Sapindaceae and Myrtaceae. The most common gall were spheroid and globoid; most galls were glabrous, predominantly green and with one chamber, and on the leaves. Most galls were induced by Cecidomyiidae (Diptera). The results of this study contribute to existing knowledge richness of galling insects and host-plant diversity in the altitudinal wetland forests of Northeastern Brazil
    corecore