190 research outputs found

    Effective interaction between molecules in the BEC regime of a superfluid Fermi gas

    Full text link
    We investigate the effective interaction between Cooper-pair molecules in the st rong-coupling BEC regime of a superfluid Fermi gas with a Feshbach resonance. Our work uses a path integral formulation and a renormalization group (RG) analy sis of fluctuations in a single-channel model. We show that a physical cutoff en ergy ωc\omega_c originating from the finite molecular binding energy is the key to understanding the interaction between molecules in the BEC regime. Our work t hus clarifies recent results by showing that aM=2aFa_{\rm M}=2a_{\rm F} is a {\it ba re} molecular scattering length while aM=(0.60.75)aFa_{\rm M}=(0.6\sim0.75) a_{\rm F} is the low energy molecular scattering length renormalized to include high-energy scat tering up to ωc\omega_c (here aFa_{\rm F} is the scattering length between Fermi atoms). We also include many-body effects at finite temperatures. We find that aMa_{\rm M} is strongly dependent on temperature, vanishing at TcT_{\rm c}, consistent with the earlier Bose gas results of Bijlsma and Stoof.Comment: 10 pages, 3 figure

    Transition Temperature of a Uniform Imperfect Bose Gas

    Full text link
    We calculate the transition temperature of a uniform dilute Bose gas with repulsive interactions, using a known virial expansion of the equation of state. We find that the transition temperature is higher than that of an ideal gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a is the S-wave scattering length, and K_0 is a constant given in the paper. This disagrees with all existing results, analytical or numerical. It agrees exactly in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe

    Shot noise suppression at room temperature in atomic-scale Au junctions

    Full text link
    Shot noise encodes additional information not directly inferable from simple electronic transport measurements. Previous measurements in atomic-scale metal junctions at cryogenic temperatures have shown suppression of the shot noise at particular conductance values. This suppression demonstrates that transport in these structures proceeds via discrete quantum channels. Using a high frequency technique, we simultaneously acquire noise data and conductance histograms in Au junctions at room temperature and ambient conditions. We observe noise suppression at up to three conductance quanta, with possible indications of current-induced local heating and 1/f1/f noise in the contact region at high biases. These measurements demonstrate the quantum character of transport at room temperature at the atomic scale. This technique provides an additional tool for studying dissipation and correlations in nanodevices.Comment: 15 pages, 4 figures + supporting information (6 pages, 6 figures

    The effect of disorder on the critical temperature of a dilute hard sphere gas

    Get PDF
    We have performed Path Integral Monte Carlo (PIMC) calculations to determine the effect of quenched disorder on the superfluid density of a dilute 3D hard sphere gas. The disorder was introduced by locating set of hard cylinders randomly inside the simulation cell. Our results indicate that the disorder leaves the superfluid critical temperature basically unchanged. Comparison to experiments of helium in Vycor is made.Comment: 4 pages, 4 figure

    Thermodynamic properties of confined interacting Bose gases - a renormalization group approach

    Full text link
    A renormalization group method is developed with which thermodynamic properties of a weakly interacting, confined Bose gas can be investigated. Thereby effects originating from a confining potential are taken into account by periodic boundary conditions and by treating the resulting discrete energy levels of the confined degrees of freedom properly. The resulting density of states modifies the flow equations of the renormalization group in momentum space. It is shown that as soon as the characteristic length of confinement becomes comparable to the thermal wave length of a weakly interacting and trapped Bose gas its thermodynamic properties are changed significantly. This is exemplified by investigating characteristic bunching properties of the interacting Bose gas which manifest themselves in the second order coherence factor

    Self-consistent equation for an interacting Bose gas

    Full text link
    We consider interacting Bose gas in thermal equilibrium assuming a positive and bounded pair potential V(r)V(r) such that 0<\int d\br V(r) = a<\infty. Expressing the partition function by the Feynman-Kac functional integral yields a classical-like polymer representation of the quantum gas. With Mayer graph summation techniques, we demonstrate the existence of a self-consistent relation ρ(μ)=F(μaρ(μ))\rho (\mu)=F(\mu-a\rho(\mu)) between the density ρ\rho and the chemical potential μ\mu, valid in the range of convergence of Mayer series. The function FF is equal to the sum of all rooted multiply connected graphs. Using Kac's scaling V_{\gamma}(\br)=\gamma^{3}V(\gamma r) we prove that in the mean-field limit γ0\gamma\to 0 only tree diagrams contribute and function FF reduces to the free gas density. We also investigate how to extend the validity of the self-consistent relation beyond the convergence radius of Mayer series (vicinity of Bose-Einstein condensation) and study dominant corrections to mean field. At lowest order, the form of function FF is shown to depend on single polymer partition function for which we derive lower and upper bounds and on the resummation of ring diagrams which can be analytically performed.Comment: 33 pages, 6 figures, submitted to Phys.Rev.

    Green's functions for parabolic systems of second order in time-varying domains

    Full text link
    We construct Green's functions for divergence form, second order parabolic systems in non-smooth time-varying domains whose boundaries are locally represented as graph of functions that are Lipschitz continuous in the spatial variables and 1/2-H\"older continuous in the time variable, under the assumption that weak solutions of the system satisfy an interior H\"older continuity estimate. We also derive global pointwise estimates for Green's function in such time-varying domains under the assumption that weak solutions of the system vanishing on a portion of the boundary satisfy a certain local boundedness estimate and a local H\"older continuity estimate. In particular, our results apply to complex perturbations of a single real equation.Comment: 25 pages, 0 figur

    Quantum corrections to the ground state energy of a trapped Bose-Einstein condensate: A diffusion Monte Carlo calculation

    Full text link
    The diffusion Monte Carlo method is applied to describe a trapped atomic Bose-Einstein condensate at zero temperature, fully quantum mechanically and nonperturbatively. For low densities, n(0)a32103n(0)a^3 \le 2 \cdot 10^{-3} [n(0): peak density, a: s-wave scattering length], our calculations confirm that the exact ground state energy for a sum of two-body interactions depends on only the atomic physics parameter a, and no other details of the two-body model potential. Corrections to the mean-field Gross-Pitaevskii energy range from being essentially negligible to about 20% for N=2-50 particles in the trap with positive s-wave scattering length a=100-10000 a.u.. Our numerical calculations confirm that inclusion of an additional effective potential term in the mean-field equation, which accounts for quantum fluctuations [see e.g. E. Braaten and A. Nieto, Phys. Rev. B 56}, 14745 (1997)], leads to a greatly improved description of trapped Bose gases.Comment: 7 pages, 4 figure

    The density dependence of the transition temperature in a homogenous Bose flui

    Full text link
    Transition temperature data obtained as a function of particle density in the 4^4He-Vycor system are compared with recent theoretical calculations for 3D Bose condensed systems. In the low density dilute Bose gas regime we find, in agreement with theory, a positive shift in the transition temperature of the form ΔT/T0=γ(na3)1/3\Delta T/T_0 = \gamma(na^{3})^{1/3}. At higher densities a maximum is found in the ratio of Tc/T0T_c /T_0 for a value of the interaction parameter, na3^3, that is in agreement with path-integral Monte Carlo calculations.Comment: 4 pages, 3 figure

    Path integral Monte Carlo simulation of helium at negative pressures

    Full text link
    Path integral Monte Carlo (PIMC) simulations of liquid helium at negative pressure have been carried out for a temperature range from the critical temperature to below the superfluid transition. We have calculated the temperature dependence of the spinodal line as well as the pressure dependence of the isothermal sound velocity in the region of the spinodal. We discuss the slope of the superfluid transition line and the shape of the dispersion curve at negative pressures.Comment: 6 pages, 7 figures, submitted to Physical Review B Revised: new reference, replaced figure
    corecore