1,115 research outputs found

    Development and progress of engineering of skeletal muscle tissue

    Get PDF
    Engineering skeletal muscle tissue remains still a challenge, and numerous studies have indicated that this technique may be of great importance in medicine in the near future. This article reviews some of the recent findings resulting from tissue engineering science related to the contractile behavior and the phenotypes of muscle tissue cells in different three-dimensional environment, and discusses how tissue engineering could be used to create and regenerate skeletal muscle, as well as the extended applications and the related patents concerned with engineered skeletal muscle. © 2009, Mary Ann Liebert, Inc.published_or_final_versio

    Enhancing network transmission capacity by efficiently allocating node capability

    Get PDF
    A network s transmission capacity is the maximal rate of traffic inflow that the network can handle without causing congestion Here we study how to enhance this quantity by allocating resource to individual nodes while preserving the total amount of the resource available We propose a practical and effective scheme which redistributes node capability based on the local knowledge of node connectivity We show that our scheme enhances the transmission capacity of networks with heterogeneous structures by up to two orders of magnitude

    The effect of mesenchymal stem cells in stimulating intervertebral disc cells: a comparative study towards disc regeneration

    Get PDF
    Local Scholarship Awardees - Poster Sessions: no. 8DMM 2011 entitled: Re-engineering Regenerative MedicineINTRODUCTION: Intervertebral disc (IVD) degeneration is suggested to begin from the nucleus pulposus (NP). Evidence from various studies highlights mesenchymal stem cells (MSC), in most cases using bone marrow derived MSC, as a potential stem cell source for NP regeneration. However there are indications that fetal or close to fetal tissue sources contain MSC with relatively undifferentiated phenotype with respect to MSC from adult sources. Moreover, umbilical cord (C)-MSC may have better chondrogenic differentiation potential than bone marrow (B)-MSC. We hypothesize CMSC are more efficient than BMSC in stimulating NP ...postprin

    Iron-Catalyzed Nitrene Insertion Reaction for Facile Construction of Amide Compounds

    Get PDF
    A facile method for the construction of amide compounds from aldehydes by an iron-catalyzed nitrene insertion reaction has been developed. Both aryl and aliphatic aldehydes can directly afford the corresponding amides with an iron(II)-terpyridine (tpy) complex formed in situ as catalyst, and PhI=NTs as nitrogen source under mild reaction conditions. An ESI-MS study revealed the formation of [Fe(tpy)NTs)]+ as a reaction intermediate. © Georg Thieme Verlag Stuttgart - New York.postprin

    RFID-enabled real-time manufacturing execution system for discrete manufacturing: Software design and implementation

    Get PDF
    Discrete manufacturing (DM) refers to produce products in non-sequential processes so as to respond to market and customer requirements quickly under limited lead-time. However, in shop-floor management, DM companies usually confront challenges such as information gaps between different manufacturing units, slow responsiveness to customer changes, and poor visualization. The main reasons are lacking of efficient manufacturing data collection manners and software to support shop-floor management. This paper introduces an RFID-enabled real-time manufacturing execution system (RT-MES) for improving DM shop-floor management level in the perspective of illustrating the RT-MES software design and implementation. Several contributions from this paper are significant. First, a framework of RFID-enabled RT-MES is proposed, which is generic and helpful for enterprise information system (EIS) construction. Second, a plug-universal database-aided design (PUDAD) concept and its realization are elaborated, which could reduce RT-MES development and implementation cycle. Third, an interface middleware is reported to enable RT-MES real-time intercommunication with other EISs such as SAP ERP. Fourth, a real-life case study describes how RT-MES to enhance a typical DM firm's shop-floor management, which can be referenced by other DM companies when they initiate and implement RFID-enabled solutions. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Conference on Networking, Sensing and Control (ICNSC 2011), Delft, the Netherlands, 11-13 April 2011. In Proceedings of ICNSC, 2011, p. 311-31

    Practical iron-catalyzed atom/group transfer and insertion reactions

    Get PDF
    Iron-catalyzed reactions are receiving a surge of interest owing to the natural abundance and biocompatibility of Fe and the urge to develop practically useful sustainable catalysis for fine chemical industries. This article is a brief account of our studies on the C-O and C-N bond formation reactions catalyzed by Fe complexes supported by oligopyridine, macrocyclic tetraaza, and fluorinated porphyrin ligands. The working principle is the in situ generation of reactive Fe=O and Fe=NR intermediates supported by these oxidatively robust N-donor ligands for oxygen atom/nitrogen group transfer and insertion reactions. The catalytic reactions include C-H bond oxidation of saturated hydrocarbons (up to 87 % yield), epoxidation of alkenes (up to 96 % yield), cis-dihydroxylation of alkenes (up to 99 % yield), epoxidation-isomerization (E-I) reaction of aryl alkenes (up to 94 % yield), amination of C-H bonds (up to 95 % yield), aziridination of alkenes (up to 95 % yield), sulfimidation of sulfides (up to 96 % yield), and amide formation from aldehydes (up to 89 % yield). Many of these catalytic reactions feature high regio- and diastereoselectivity and/or high product yields and substrate conversions, and recyclability of the catalyst, demonstrating the applicability of Fe-catalyzed oxidative organic transformation reactions in practical organic synthesis. © 2012 IUPAC.published_or_final_versio

    Genome-wide analysis of the nucleotide binding site leucine-rich repeat genes of four orchids revealed extremely low numbers of disease resistance genes

    Get PDF
    Orchids are one of the most diverse flowering plant families, yet possibly maintain the smallest number of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) type plant resistance (R) genes among the angiosperms. In this study, a genome-wide search in four orchid taxa identified 186 NBS-LRR genes. Furthermore, 214 NBS-LRR genes were identified from seven orchid transcriptomes. A phylogenetic analysis recovered 30 ancestral lineages (29 CNL and one RNL), far fewer than other angiosperm families. From the genetics aspect, the relatively low number of ancestral R genes is unlikely to explain the low number of R genes in orchids alone, as historical gene loss and scarce gene duplication has continuously occurred, which also contributes to the low number of R genes. Due to recent sharp expansions, Phalaenopsis equestris and Dendrobium catenatum having 52 and 115 genes, respectively, and exhibited an "early shrinking to recent expanding" evolutionary pattern, while Gastrodia elata and Apostasia shenzhenica both exhibit a "consistently shrinking" evolutionary pattern and have retained only five and 14 NBS-LRR genes, respectively. RNL genes remain in extremely low numbers with only one or two copies per genome. Notably, all of the orchid RNL genes belong to the ADR1 lineage. A separate lineage, NRG1, was entirely absent and was likely lost in the common ancestor of all monocots. All of the TNL genes were absent as well, coincident with the RNL NRG1 lineage, which supports the previously proposed notion that a potential functional association between the TNL and RNL NRG1 genes

    Searching for plasticity in dissociated cortical cultures on multi-electrode arrays

    Get PDF
    We attempted to induce functional plasticity in dense cultures of cortical cells using stimulation through extracellular electrodes embedded in the culture dish substrate (multi-electrode arrays, or MEAs). We looked for plasticity expressed in changes in spontaneous burst patterns, and in array-wide response patterns to electrical stimuli, following several induction protocols related to those used in the literature, as well as some novel ones. Experiments were performed with spontaneous culture-wide bursting suppressed by either distributed electrical stimulation or by elevated extracellular magnesium concentrations as well as with spontaneous bursting untreated. Changes concomitant with induction were no larger in magnitude than changes that occurred spontaneously, except in one novel protocol in which spontaneous bursts were quieted using distributed electrical stimulation
    corecore