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Abstract

A network’s transmission capacity is the maximal rate of traffic
inflow that the network can handle without causing congestion. Here
we study how to enhance this quantity by redistributing the capability
of individual nodes while preserving the total sum of node capability.
We propose a practical and effective node-capability allocation scheme
which allocates a node’s capability based on the local knowledge of the
node’s connectivity. We show the scheme enhances the transmission
capacity by two orders of magnitude for networks with heterogenous
structures.

Keywords :Networks, transmission capacity, traffic flow simulation,
network modeling, network topology, betweenness.

1 Introduction

There are different ways to enhance a network’s transmission capacity. A
number of routing strategies have been introduced to route traffic based on
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the topological properties of the network [1, 2] or the real-time load distri-
bution on links [3]. Recently we reported [4] that a network’s transmission
capacity can be increased by removing a few links with certain topological
properties. These work assume that all nodes or links are assigned with
uniform resources. However this is not the case in many networks and it is
often difficult to change a network’s routing protocol or topology.

One can also enhance a network’s transmission capacity by simply in-
creasing the resources of all nodes or links. It is, however, very expensive.
A more realistic and economical approach is to redistribute the resources in
the network, such that those that handle higher volumes of traffic load have
more resources whereas those that handle less load have fewer resources.
This should be done under the condition that the total amount of resources
allocated in the network is fixed. This is relevant to the design and engi-
neering of communication networks where a key goal is to deploy limited
resources in a way to achieve the best network performance.

Node capability and link bandwidth are two major resources to be allo-
cated. Whether to redistribute the node capability or the link bandwidth
depends on what is the major cause for congestion in a network. For exam-
ple when a new generation of routers are deployed, the processing power of
routers are greatly improved, then the congestion is mainly caused by the
lack of link bandwidth; whereas when optical fibre replaced cable, link band-
width increased by a number of magnitudes, then the congestion is mainly
caused by the lack of node processing power. Over the time these two situa-
tions may happen alternately in communication networks. In this paper we
focus on the allocation of node capability for those networks where links have
sufficient bandwidth. In our future work we will study the redistribution of
link bandwidth.

This paper is organised as follows. In Section II we introduce three
typical communication network topology models: a random graph [5], a
scale-free graph [6] and an Internet-like graph [7]. We also present a simple
yet widely used traffic-flow model based on the shortest-path routing [8].
In Section III we study a number of degree-based node-capability allocation
schemes using simulations based on the traffic-flow and topology models. We
introduce a scheme which enhances a network’s transmission capacity by two
orders of magnitude by allocating a node’s capability as a power function
of the node’s connectivity. In Section IV we discuss an alternative way to
estimate the optimal power exponent used in our scheme, and compares our
scheme with a previous scheme [8] which is based on the topological property
of betweenness [9].
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Table 1: Network properties and simulation results

Topology property ER BA PFP

Number of nodes 4,000 4,000 4,000
Number of links 12,000 12,000 12,000
Degree distribution Poisson ∝ k−3 ∝ k−2.2

Maximum degree 18 156 979
Average shortest distance 4.82 4.17 3.12
Average clustering coef. 0.001 0.007 0.253

Node-capability scheme Critical package-generating rate λc

C ∝ 1 885±21 57±17 48±9

C ∝ k 2, 616±82 1, 289±65 4, 419±108

C ∝ k1.5 4, 319±117 2, 954±302 1, 636±83

C ∝ kα∗
4, 319±117 3, 284±241 5, 126±177

C ∝ B 6, 576±215 7, 604±184 11, 592±204

Optimal exp. α∗ in Fig. 1 1.50±0.05 1.40±0.03 1.10±0.03

Fitting exp. α′ in Fig. 2 1.49±0.03 1.37±0.03 1.11±0.02

2 Background

We consider three network models as examples of typical topologies of
computer and communication networks, which are the Erdös-Rényi (ER)
model [5], the Barabási-Albert (BA) model [6] and the positive-feedback
preference (PFP) model [7]. In graph theory, degree k is defined as the
number of links a node has. The ER model generates random networks
with a Poisson degree distribution, where most nodes have a degree close
to the average degree. The ER model has been used to describe the struc-
ture of LAN and wireless ad hoc networks. The BA model generates the
so-called ‘scale-free’ networks with a power-law degree distribution, where a
few nodes have very large degrees and the majority nodes have only a few
links. Many communication networks are found to be scale-free [10] and the
BA model has been used to study the error and attack tolerance of such
networks [11]. The PFP model generates a network structure which is very
similar to the Internet at the autonomous systems level [7, 12]. For each
model we generate ten networks using random seeds to the same numbers
of nodes and links. Table 1 shows properties of the three models.

In this study we adopt a similar traffic-flow model used in [1, 4, 8, 13].
For a network with N nodes, at each time step, λ packets are generated
at randomly selected nodes. The destination is chosen randomly. A packet
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is routed following the shortest path between source and destination. The
shortest-path routing strategy is widely used in communication networks,
such as the Open Shortest Path First (OSPF) routing protocol. A node i

is assigned a capability, Ci, which is the maximal number of packets the
node can handle at a time step. When the total number of arrived and
newly created packets is larger than Ci, the packets are stored in the node’s
queue and will be processed in the following time steps on a first-in-first-out
(FIFO) basis. If there are several shortest paths for one packet, one is chosen
randomly. Packets reaching their destination are deleted from the system.
As in [1, 4, 8, 13], node buffer size in this traffic-flow model is set as infinite
as it is not relevant to the occurrence of congestion.

For small values of the packet-generating rate λ, the number of packets
on the network is small so that every packet can be processed and delivered
in time. Typically, after a short transient time, a steady state for the traffic
flow is reached where, on average, the total numbers of packets created and
delivered are equal, resulting in a free-flow state. For larger values of λ, the
number of packets created is more likely to exceed what the network can
process in time. In this case traffic congestion occurs. As λ is increased from
zero, we expect to observe two phases: free flow for small λ and a congested
phase for large λ, with a phase transition from the former to the latter at
the critical packet-generating rate λc.

In order to measure λc, we use the order parameter [14] η = limt→∞
〈∆Θ〉
λ∆t

,
where Θ(t) is the total number of packets in the network at time t, ∆Θ =
Θ(t + ∆t) − Θ(t), and 〈· · ·〉 indicates the average over time windows of ∆t.
For λ < λc the network is in the free-flow state, then ∆Θ ≈ 0 and η ≈ 0; and
for λ > λc, ∆Θ increases with ∆t thus η > 0. Therefore in our simulation
we can determine λc as the transition point where η deviates from zero.

3 Enhancing network transmission capacity

The critical packet-generating rate λc is used to measure a network’s overall
transmission capacity, which is the maximal amount of traffic flow that a
network can handle without causing congestion. Increasing network trans-
mission capacity is one of the major goals for network design and engineering.

In the following we study a number of degree-based node-capability al-
location schemes. For each network model, we obtain the network’s critical
packet-generating rate λc by running the traffic-flow simulation on the ten
instance networks of the model. Table 1 shows the average and the bounds
of λc for different node-capability allocation schemes. For comparison pur-
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pose without losing generality, we keep the sum of node capability in all
simulations the same, i.e.

∑
i Ci =

∑
i ki = 2L, where L is the number of

links.
The first scheme is a simplistic baseline case where we assign all nodes

with a uniform capability, i.e. C is equal to the average degree 〈k〉 (shown
in Table 1 as C ∝ 1). The second scheme is to allocate a node’s capability
proportional to its degree k, i.e. C ∝ k. The underlying heuristic is that the
larger degree (i.e. more incoming traffic from neighbors), the more traffic a
node needs to handle. Table 1 shows there is a substantial increase of λc

for all the networks when node capability allocation changes from uniform
scheme to degree-proportional scheme. For the ER network, λc increases
three times while for the PFP model the increase is two orders of magni-
tude. This result highlights the importance of respecting the difference in
node degrees when allocating node capability. This is particularly true for
networks featuring a heterogenous structure where node degrees vary hugely,
such as the BA and PFP models.

In the third scheme we further increase the weight of node degree by
assigning a node’s capability proportional to its degree raised to the power
of 1.5, i.e. C ∝ k1.5. As shown in Table 1, this scheme produces better
results for the ER and BA networks, but it overdoes for the PFP network.
This is because the PFP network has a few nodes with disproportionably
large degrees (see the maximum degree in Table 1). These nodes, although
a small number, take too large a share of the total node capability. This
leaves the majority of nodes, which are poorly connected, with very little
capability and therefore restrains the network overall transmission capacity.
This suggests there is an optimisation problem as how to achieve the balance
between individual and collective interest.

In order to examine this issue systematically, we define a generic degree-
based scheme as C ∝ kα. When α = 0 it is the uniform scheme and when
α = 1 it is the degree-proportional scheme. Fig. 1 shows the critical package-
generating rate λc as a function of the exponent α. For each network the λc

peaks at a characteristic value of α∗, which is the optimal exponent for the
degree-based scheme. Table 1 gives the value of α∗ and the peak value of λc

when using the node-capability allocation scheme C ∝ kα∗
.

4 Discussion and Conclusion

For any network topology we can obtain α∗ by running the traffic-flow sim-
ulation as described above, which, however, is time-consuming. Here we
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Figure 1: Critical packet-generating rate λc as a function of exponent α.

Figure 2: Largest betweenness B+ of k-degree nodes. The line fitting is
obtained by least square fitting technique.
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introduce an alternative way to estimate α∗ without having to run the sim-
ulation. Recently we analytically proved that a network’s critical packet-
generating rate can be estimated as λc = min i∈V {

C(i)N(N−1)
B(i) }, where V

is the set of node indexes [15] and B(i) is the betweenness of node i (see
definition in [9]). For the node-capability allocation scheme of C ∝ kα∗

we

have λc ∝ min k∈K{kα
∗
N(N−1)

B+(k) } where K is the set of possible degree values

and B+(k) is the largest betweenness value of k-degree nodes. (We use the
largest betweenness because λc is constrained by the largest traffic load a
k-degree node has.) This suggests that for our scheme to produce a sound
result, kα∗

should approximate B+(k). As shown in Fig. 2 this is indeed the
case where B+(k) ∝ kα′

and α′ ≃ α∗ (see Table 1). This provides a con-
venient way to estimate α∗ by fitting the function of B+(k). If a network
has a well-defined model, the betweenness calculation can be simplified by
computing on a smaller graph generated by the model.

A previous work [8] suggested that λc is maximised by allocating a
node’s capability according to the node’s betweenness. As shown in Ta-
ble 1 this scheme indeed produces better results. This is because in the
traffic-flow model, betweenness precisely estimates the traffic load at each
node. This scheme, however, faces several practical issues. Firstly, be-
tweenness is sensitive to topology changes. A minor change of a network’s
topology, e.g. adding a new link, could significantly alter the betweenness
value of nodes in all parts of the network. This requires frequent recalcula-
tion of node betweenness for networks with non-static topologies. Secondly,
betweenness calculation requires global knowledge of a network’s topology,
which is not often possible in practice. Finally, betweenness calculation, the
dominant factor of this scheme’s processing complexity, is not a trivial task,
especially for large networks. Therefore, the betweenness scheme is mainly
used to give the theoretical upper bound of λc for evaluation purpose. While
in practice it can only be used for networks with static topologies, or when
the requirement on network transmission capacity is so high that the benefit
of applying this scheme overruns the cost. By comparison our degree-based
scheme C ∝ kα∗

is more practical and robust. Firstly, we allocate a node’s
capability based on the local knowledge of node degree. Secondly, the value
of α∗ is determined by a network’s macroscopic structure which is not sen-
sitive to minor topology changes, so it can be reused. Finally, for networks
with well-defined model, α∗ can be estimated by doing the fitting on a much
smaller network generated by the model, avoiding betweenness calculation
for large real networks, which is also the dominator factor of this scheme’s
processing complexity.
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In summary we recommend our node-capability allocation scheme of
C ∝ kα∗

which can enhance a network’s transmission capacity substantially
without increasing the total amount of node capability. Usually, the value of
α∗ can be obtained by fitting the function of B+(k) without the need to run
the traffic-flow simulation. Our scheme can be viewed as an approximation
of the betweenness scheme with improved practicality and robustness.
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