6 research outputs found

    Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet

    Get PDF
    Melting of the Greenland Ice Sheet is a leading cause of land-ice mass loss and cryosphere-attributed sea level rise. Blooms of pigmented glacier ice algae lower ice albedo and accelerate surface melting in the ice sheet’s southwest sector. Although glacier ice algae cause up to 13% of the surface melting in this region, the controls on bloom development remain poorly understood. Here we show a direct link between mineral phosphorus in surface ice and glacier ice algae biomass through the quantification of solid and fluid phase phosphorus reservoirs in surface habitats across the southwest ablation zone of the ice sheet. We demonstrate that nutrients from mineral dust likely drive glacier ice algal growth, and thereby identify mineral dust as a secondary control on ice sheet melting.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Bipolar dispersal of red-snow algae

    Full text link
    Red-snow algae are red-pigmented unicellular algae that appear seasonally on the surface of thawing snow worldwide. Here, we analyse the distribution patterns of snow algae sampled from glaciers and snow patches in the Arctic and Antarctica based on nuclear ITS2 sequences, which evolve rapidly. The number of phylotypes is limited in both polar regions, and most are specific to either the Arctic or Antarctica. However, the bipolar phylotypes account for the largest share (37.3%) of all sequences, suggesting that red-algal blooms in polar regions may comprise mainly cosmopolitan phylotypes but also include endemic organisms, which are distributed either in the Arctic or Antarctica

    Radiative forcing by light-absorbing particles in snow

    No full text
    As one of the brightest natural surfaces on Earth, the darkening of snow by light-absorbing particles (LAPs) — dust, black carbon or microbial growth — can trigger albedo feedbacks and accelerate snowmelt. Indeed, an increase in black carbon deposition following the industrial revolution has led to the recognition that LAP radiative forcing has contributed to a reduction in the global cryosphere, with corresponding climatic impacts. This Review synthesizes our current understanding of the distribution of radiative forcing by LAPs in snow, and discusses the challenges that need to be overcome to constrain global impacts, including the limited scope of local-scale observations, limitations of remote sensing technology and the representation of LAP-related processes in Earth system models
    corecore