14 research outputs found

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Oxidative Stress in Zebrafish (Danio rerio) Sperm

    Get PDF
    Laboratories around the world have produced tens of thousands of mutant and transgenic zebrafish lines. As with mice, maintaining all of these valuable zebrafish genotypes is expensive, risky, and beyond the capacity of even the largest stock centers. Because reducing oxidative stress has become an important aspect of reducing the variability in mouse sperm cryopreservation, we examined whether antioxidants might improve cryopreservation of zebrafish sperm. Four experiments were conducted in this study. First, we used the xanthine-xanthine oxidase (X-XO) system to generate reactive oxygen species (ROS). The X-XO system was capable of producing a stress reaction in zebrafish sperm reducing its sperm motility in a concentration dependent manner (P<0.05). Second, we examined X-XO and the impact of antioxidants on sperm viability, ROS and motility. Catalase (CAT) mitigated stress and maintained viability and sperm motility (P>0.05), whereas superoxide dismutase (SOD) and vitamin E did not (P<0.05). Third, we evaluated ROS in zebrafish spermatozoa during cryopreservation and its effect on viability and motility. Methanol (8%) reduced viability and sperm motility (P<0.05), but the addition of CAT mitigated these effects (P>0.05), producing a mean 2.0 to 2.9-fold increase in post-thaw motility. Fourth, we examined the effect of additional cryoprotectants and CAT on fresh sperm motility. Cryoprotectants, 8% methanol and 10% dimethylacetamide (DMA), reduced the motility over the control value (P<0.5), whereas 10% dimethylformamide (DMF) with or without CAT did not (P>0.05). Zebrafish sperm protocols should be modified to improve the reliability of the cryopreservation process, perhaps using a different cryoprotectant. Regardless, the simple addition of CAT to present-day procedures will significantly improve this process, assuring increased and less variable fertilization success and allowing resource managers to dependably plan how many straws are needed to safely cryopreserve a genetic line

    Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells

    No full text

    Construct validity of functional capacity tests in healthy workers

    Get PDF
    <p>Background: Functional Capacity (FC) is a multidimensional construct within the activity domain of the International Classification of Functioning, Disability and Health framework (ICF). Functional capacity evaluations (FCEs) are assessments of work-related FC. The extent to which these work-related FC tests are associated to bio-, psycho-, or social factors is unknown. The aims of this study were to test relationships between FC tests and other ICF factors in a sample of healthy workers, and to determine the amount of statistical variance in FC tests that can be explained by these factors.</p><p>Methods: A cross sectional study. The sample was comprised of 403 healthy workers who completed material handling FC tests (lifting low, overhead lifting, and carrying) and static work FC tests (overhead working and standing forward bend). The explainable variables were; six muscle strength tests; aerobic capacity test; and questionnaires regarding personal factors (age, gender, body height, body weight, and education), psychological factors (mental health, vitality, and general health perceptions), and social factors (perception of work, physical workloads, sport-, leisure time-, and work-index). A priori construct validity hypotheses were formulated and analyzed by means of correlation coefficients and regression analyses.</p><p>Results: Moderate correlations were detected between material handling FC tests and muscle strength, gender, body weight, and body height. As for static work FC tests; overhead working correlated fair with aerobic capacity and handgrip strength, and low with the sport-index and perception of work. For standing forward bend FC test, all hypotheses were rejected. The regression model revealed that 61% to 62% of material handling FC tests were explained by physical factors. Five to 15% of static work FC tests were explained by physical and social factors.</p><p>Conclusions: The current study revealed that, in a sample of healthy workers, material handling FC tests were related to physical factors but not to the psychosocial factors measured in this study. The construct of static work FC tests remained largely unexplained.</p>
    corecore