1,480 research outputs found

    Why do investment banks buy put options from companies?

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordCompanies have collected billions in premiums from privately sold put options written on their own stock. It is puzzling that counterparties, investment banks, would agree to make such transactions with better-informed companies which have extraordinary ability to time the market as documented by Jenter et al. (2011). To resolve this puzzle, we develop a model that shows that investment banks, by offering to buy put options from better-informed parties, receive private information about issuing companies. Our model also incorporates the practice of firms (such as Microsoft) of sometimes repurchasing their own put options and thus providing additional private information to investment banks. Empirically, we find support for our theory from an abnormal 9% increase in the stock prices and a 40% increase in the trading volumes around the put sales. Examination of 13D filings reveals that trading by upper management insiders cannot completely account for the change in volum

    Multivariate discrimination and the Higgs + W/Z search

    Get PDF
    A systematic method for optimizing multivariate discriminants is developed and applied to the important example of a light Higgs boson search at the Tevatron and the LHC. The Significance Improvement Characteristic (SIC), defined as the signal efficiency of a cut or multivariate discriminant divided by the square root of the background efficiency, is shown to be an extremely powerful visualization tool. SIC curves demonstrate numerical instabilities in the multivariate discriminants, show convergence as the number of variables is increased, and display the sensitivity to the optimal cut values. For our application, we concentrate on Higgs boson production in association with a W or Z boson with H -> bb and compare to the irreducible standard model background, Z/W + bb. We explore thousands of experimentally motivated, physically motivated, and unmotivated single variable discriminants. Along with the standard kinematic variables, a number of new ones, such as twist, are described which should have applicability to many processes. We find that some single variables, such as the pull angle, are weak discriminants, but when combined with others they provide important marginal improvement. We also find that multiple Higgs boson-candidate mass measures, such as from mild and aggressively trimmed jets, when combined may provide additional discriminating power. Comparing the significance improvement from our variables to those used in recent CDF and DZero searches, we find that a 10-20% improvement in significance against Z/W + bb is possible. Our analysis also suggests that the H + W/Z channel with H -> bb is also viable at the LHC, without requiring a hard cut on the W/Z transverse momentum.Comment: 41 pages, 5 tables, 29 figure

    The Yangian origin of the Grassmannian integral

    Get PDF
    In this paper we analyse formulas which reproduce different contributions to scattering amplitudes in N=4 super Yang-Mills theory through a Grassmannian integral. Recently their Yangian invariance has been proved directly by using the explicit expression of the Yangian level-one generators. The specific cyclic structure of the form integrated over the Grassmannian enters in a crucial way in demonstrating the symmetry. Here we show that the Yangian symmetry fixes this structure uniquely.Comment: 26 pages. v2: typos corrected, published versio

    The mass area of jets

    Get PDF
    We introduce a new characteristic of jets called mass area. It is defined so as to measure the susceptibility of the jet's mass to contamination from soft background. The mass area is a close relative of the recently introduced catchment area of jets. We define it also in two variants: passive and active. As a preparatory step, we generalise the results for passive and active areas of two-particle jets to the case where the two constituent particles have arbitrary transverse momenta. As a main part of our study, we use the mass area to analyse a range of modern jet algorithms acting on simple one and two-particle systems. We find a whole variety of behaviours of passive and active mass areas depending on the algorithm, relative hardness of particles or their separation. We also study mass areas of jets from Monte Carlo simulations as well as give an example of how the concept of mass area can be used to correct jets for contamination from pileup. Our results show that the information provided by the mass area can be very useful in a range of jet-based analyses.Comment: 36 pages, 12 figures; v2: improved quality of two plots, added entry in acknowledgments, nicer form of formulae in appendix A; v3: added section with MC study and pileup correction, version accepted by JHE

    The Grassmannian and the Twistor String: Connecting All Trees in N=4 SYM

    Full text link
    We present a new, explicit formula for all tree-level amplitudes in N=4 super Yang-Mills. The formula is written as a certain contour integral of the connected prescription of Witten's twistor string, expressed in link variables. A very simple deformation of the integrand gives directly the Grassmannian integrand proposed by Arkani-Hamed et al. together with the explicit contour of integration. The integral is derived by iteratively adding particles to the Grassmannian integral, one particle at a time, and makes manifest both parity and soft limits. The formula is shown to be related to those given by Dolan and Goddard, and generalizes the results of earlier work for NMHV and N^2MHV to all N^(k-2)MHV tree amplitudes in N=4 super Yang-Mills.Comment: 26 page

    Optimal jet radius in kinematic dijet reconstruction

    Get PDF
    Obtaining a good momentum reconstruction of a jet is a compromise between taking it large enough to catch the perturbative final-state radiation and small enough to avoid too much contamination from the underlying event and initial-state radiation. In this paper, we compute analytically the optimal jet radius for dijet reconstructions and study its scale dependence. We also compare our results with previous Monte-Carlo studies.Comment: 30 pages, 11 figures; minor corrections; published in JHE

    Primary aldosteronism: A Japanese perspective

    Get PDF
    Primary aldosteronism (PA) is the most common cause of secondary hypertension, accounting for 10% of all hypertension. Far from being benign, hypertension due to PA is associated with high cardiovascular morbidity and mortality. However, PA is still underdiagnosed in general practice. Recent reports strongly recommend that identifying patients with PA is cost-beneficial based on improved cardiovascular outcomes afforded by specific surgical and medical treatment. This review provides an update of PA including controversial aspects of diagnosis and treatment

    Challenges to the development of antigen-specific breast cancer vaccines

    Get PDF
    Continued progress in the development of antigen-specific breast cancer vaccines depends on the identification of appropriate target antigens, the establishment of effective immunization strategies, and the ability to circumvent immune escape mechanisms. Methods such as T cell epitope cloning and serological expression cloning (SEREX) have led to the identification of a number target antigens expressed in breast cancer. Improved immunization strategies, such as using dendritic cells to present tumor-associated antigens to T lymphocytes, have been shown to induce antigen-specific T cell responses in vivo and, in some cases, objective clinical responses. An outcome of successful tumor immunity is the evolution of antigen-loss tumor variants. The development of a polyvalent breast cancer vaccine, directed against a panel of tumor-associated antigens, may counteract this form of immune escape

    Resummation of heavy jet mass and comparison to LEP data

    Get PDF
    The heavy jet mass distribution in e+e- collisions is computed to next-to-next-to-next-to leading logarithmic (NNNLL) and next-to-next-to leading fixed order accuracy (NNLO). The singular terms predicted from the resummed distribution are confirmed by the fixed order distributions allowing a precise extraction of the unknown soft function coefficients. A number of quantitative and qualitative comparisons of heavy jet mass and the related thrust distribution are made. From fitting to ALEPH data, a value of alpha_s is extracted, alpha_s(m_Z)=0.1220 +/- 0.0031, which is larger than, but not in conflict with, the corresponding value for thrust. A weighted average of the two produces alpha_s(m_Z) = 0.1193 +/- 0.0027, consistent with the world average. A study of the non-perturbative corrections shows that the flat direction observed for thrust between alpha_s and a simple non-perturbative shape parameter is not lifted in combining with heavy jet mass. The Monte Carlo treatment of hadronization gives qualitatively different results for thrust and heavy jet mass, and we conclude that it cannot be trusted to add power corrections to the event shape distributions at this accuracy. Whether a more sophisticated effective field theory approach to power corrections can reconcile the thrust and heavy jet mass distributions remains an open question.Comment: 33 pages, 14 figures. v2 added effect of lower numerical cutoff with improved extraction of the soft function constants; power correction discussion clarified. v3 small typos correcte

    Local Spacetime Physics from the Grassmannian

    Full text link
    A duality has recently been conjectured between all leading singularities of n-particle N^(k-2)MHV scattering amplitudes in N=4 SYM and the residues of a contour integral with a natural measure over the Grassmannian G(k,n). In this note we show that a simple contour deformation converts the sum of Grassmannian residues associated with the BCFW expansion of NMHV tree amplitudes to the CSW expansion of the same amplitude. We propose that for general k the same deformation yields the (k-2) parameter Risager expansion. We establish this equivalence for all MHV-bar amplitudes and show that the Risager degrees of freedom are non-trivially determined by the GL(k-2) "gauge" degrees of freedom in the Grassmannian. The Risager expansion is known to recursively construct the CSW expansion for all tree amplitudes, and given that the CSW expansion follows directly from the (super) Yang-Mills Lagrangian in light-cone gauge, this contour deformation allows us to directly see the emergence of local space-time physics from the Grassmannian.Comment: 22 pages, 13 figures; v2: minor updates, typos correcte
    • …
    corecore