3,301 research outputs found

    V<sub>H</sub> replacement in rearranged immunoglobulin genes

    Get PDF
    Examples suggesting that all or part of the V&lt;sub&gt;H&lt;/sub&gt; segment of a rearranged V&lt;sub&gt;H&lt;/sub&gt;DJ&lt;sub&gt;H&lt;/sub&gt; may be replaced by all or part of another V&lt;sub&gt;H&lt;/sub&gt; have been appearing since the 1980s. Evidence has been presented of two rather different types of replacement. One of these has gained acceptance and has now been clearly demonstrated to occur. The other, proposed more recently, has not yet gained general acceptance because the same effect can be produced by polymerase chain reaction artefact. We review both types of replacement including a critical examination of evidence for the latter. The first type involves RAG proteins and recombination signal sequences (RSS) and occurs in immature B cells. The second was also thought to be brought about by RAG proteins and RSS. However, it has been reported in hypermutating cells which are not thought to express RAG proteins but in which activation-induced cytidine deaminase (AID) has recently been shown to initiate homologous recombination. Re-examination of the published sequences reveals AID target sites in V&lt;sub&gt;H&lt;/sub&gt;-V&lt;sub&gt;H&lt;/sub&gt; junction regions and examples that resemble gene conversion

    Phenomenology of event shapes at hadron colliders

    Get PDF
    We present results for matched distributions of a range of dijet event shapes at hadron colliders, combining next-to-leading logarithmic (NLL) accuracy in the resummation exponent, next-to-next-to leading logarithmic (NNLL) accuracy in its expansion and next-to-leading order (NLO) accuracy in a pure alpha_s expansion. This is the first time that such a matching has been carried out for hadronic final-state observables at hadron colliders. We compare our results to Monte Carlo predictions, with and without matching to multi-parton tree-level fixed-order calculations. These studies suggest that hadron-collider event shapes have significant scope for constraining both perturbative and non-perturbative aspects of hadron-collider QCD. The differences between various calculational methods also highlight the limits of relying on simultaneous variations of renormalisation and factorisation scale in making reliable estimates of uncertainties in QCD predictions. We also discuss the sensitivity of event shapes to the topology of multi-jet events, which are expected to appear in many New Physics scenarios.Comment: 70 pages, 25 figures, additional material available from http://www.lpthe.jussieu.fr/~salam/pp-event-shapes

    Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission

    Full text link
    High-TcT_c cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antinodal quasiparticle excitations appear only below TcT_c, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to TcT_c. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic

    Released micromachined beams utilizing laterally uniform porosity porous silicon

    Get PDF
    © 2014, Sun et al.; licensee Springer. Abstract: Suspended micromachined porous silicon beams with laterally uniform porosity are reported, which have been fabricated using standard photolithography processes designed for compatibility with complementary metal-oxide-semiconductor (CMOS) processes. Anodization, annealing, reactive ion etching, repeated photolithography, lift off and electropolishing processes were used to release patterned porous silicon microbeams on a Si substrate. This is the first time that micromachined, suspended PS microbeams have been demonstrated with laterally uniform porosity, well-defined anchors and flat surfaces. PACS: 81.16.-c; 81.16.Nd; 81.16.R

    Heavy Squarks at the LHC

    Full text link
    The LHC, with its seven-fold increase in energy over the Tevatron, is capable of probing regions of SUSY parameter space exhibiting qualitatively new collider phenomenology. Here we investigate one such region in which first generation squarks are very heavy compared to the other superpartners. We find that the production of these squarks, which is dominantly associative, only becomes rate-limited at mSquark > 4(5) TeV for L~10(100) fb-1. However, discovery of this scenario is complicated because heavy squarks decay primarily into a jet and boosted gluino, yielding a dijet-like topology with missing energy (MET) pointing along the direction of the second hardest jet. The result is that many signal events are removed by standard jet/MET anti-alignment cuts designed to guard against jet mismeasurement errors. We suggest replacing these anti-alignment cuts with a measurement of jet substructure that can significantly extend the reach of this channel while still removing much of the background. We study a selection of benchmark points in detail, demonstrating that mSquark= 4(5) TeV first generation squarks can be discovered at the LHC with L~10(100)fb-1

    Flexible IZO/Ag/IZO/Ag multilayer electrode grown on a polyethylene terephthalate substrate using roll-to-roll sputtering

    Get PDF
    We investigated the optical, electrical, structural, and surface properties of roll-to-roll [R2R] sputter-grown flexible IZO/Ag/IZO/Ag [IAIA] multilayer films on polyethylene terephthalate substrates as a function of the top indium zinc oxide [IZO] thickness. It was found that the optical transmittance of the IAIA multilayer was significantly influenced by the top IZO layer thickness, which was grown on identical AIA multilayers. However, the sheet resistance of the IAIA multilayer was maintained between the range 5.01 to 5.1 Ω/square regardless of the top IZO thickness because the sheet resistance of the IAIA multilayer was mainly dependent on the thickness of the Ag layers. Notably, the optimized IAIA multilayer had a constant resistance change (ΔR/R0) under repeated outer bending tests with a radius of 10 mm. The mechanical integrity of the R2R-sputtered IAIA multilayer indicated that hybridization of an IZO and Ag metal layer is a promising flexible electrode scheme for the next-generation flexible optoelectronics

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Sex-biased parental care and sexual size dimorphism in a provisioning arthropod

    Get PDF
    The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. While the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort – for example where mothers transport heavy provisions to nests. To test this hypothesis we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to 10 times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest. We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight. Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species

    Murine GRPR and Stathmin Control in Opposite Directions both Cued Fear Extinction and Neural Activities of the Amygdala and Prefrontal Cortex

    Get PDF
    Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction
    corecore