11 research outputs found
Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits
Background
Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation.
Objective
The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry.
Results
The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior.
Conclusions
Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression
Selection of sucrose concentration depends on the effort required to obtain it: studies using tetrabenazine, D<sub>1</sub>, D<sub>2</sub>, and D<sub>3</sub> receptor antagonists
RationaleLow doses of dopamine (DA) antagonists and accumbens DA depletions reduce food-reinforced instrumental behavior but do not impair primary food motivation, causing animals to reallocate behavior away from food-reinforced tasks with high response requirements and select less effortful alternatives. However, it is uncertain if this same pattern of effects would occur if sucrose was used as the reinforcer.
Objectives
These experiments studied the impact of DA depletion and antagonism on performance of an effort-related choice task using sucrose as the reinforcer, as well as sucrose consumption, preference, and taste reactivity tests.
Methods
The effects of DA manipulations were assessed using a task in which rats chose between lever pressing on a fixed ratio 7 schedule for 5.0 % sucrose versus freely consuming a less concentrated solution (0.3 %).
Results
The DA depleting agent tetrabenazine shifted effort-related choice, decreasing lever pressing for 5.0 % sucrose but increasing intake of the concurrently available 0.3 % sucrose. Tetrabenazine did not affect sucrose appetitive taste reactivity, or sucrose consumption or preference, in free consumption tests. The D1 antagonist ecopipam and the D2 antagonist haloperidol also shifted choice behavior at doses that did not alter sucrose consumption or preference. In contrast, sucrose pre-exposure reduced consumption across all conditions. D3 antagonism had no effects.
Conclusions
D1 and D2 receptor blockade and DA depletion reduce the tendency to work for sucrose under conditions that leave fundamental aspects of sucrose motivation (intake, preference, hedonic reactivity) intact. These findings have implications for studies employing sucrose intake or preference in animal models of depression