108 research outputs found
Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing.
Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments
Quantum Zakharov Model in a Bounded Domain
We consider an initial boundary value problem for a quantum version of the
Zakharov system arising in plasma physics. We prove the global well-posedness
of this problem in some Sobolev type classes and study properties of solutions.
This result confirms the conclusion recently made in physical literature
concerning the absence of collapse in the quantum Langmuir waves. In the
dissipative case the existence of a finite dimensional global attractor is
established and regularity properties of this attractor are studied. For this
we use the recently developed method of quasi-stability estimates. In the case
when external loads are functions we show that every trajectory from
the attractor is both in time and spatial variables. This can be
interpret as the absence of sharp coherent structures in the limiting dynamics.Comment: 27 page
The Gel'fand problem for the biharmonic operator
We study stable solutions of a fourth order nonlinear elliptic equation, both
in entire space and in bounded domains
The Stromal Processing Peptidase of Chloroplasts is Essential in Arabidopsis, with Knockout Mutations Causing Embryo Arrest after the 16-Cell Stage
Stromal processing peptidase (SPP) is a metalloendopeptidase located in the stroma of chloroplasts, and it is responsible for the cleavage of transit peptides from preproteins upon their import into the organelle. Two independent mutant Arabidopsis lines with T-DNA insertions in the SPP gene were analysed (spp-1 and spp-2). For both lines, no homozygous mutant plants could be detected, and the segregating progeny of spp heterozygotes contained heterozygous and wild-type plants in a ratio of 2∶1. The siliques of heterozygous spp-1 and spp-2 plants contained many aborted seeds, at a frequency of ∼25%, suggesting embryo lethality. By contrast, transmission of the spp mutations through the male and female gametes was found to be normal, and so gametophytic effects could be ruled out. To further elucidate the timing of the developmental arrest, mutant and wild-type seeds were cleared and analysed by Nomarski microscopy. A significant proportion (∼25%) of the seeds in mutant siliques exhibited delayed embryogenesis compared to those in wild type. Moreover, the mutant embryos never progressed normally beyond the 16-cell stage, with cell divisions not completing properly thereafter. Heterozygous spp mutant plants were phenotypically indistinguishable from the wild type, indicating that the spp knockout mutations are completely recessive and suggesting that one copy of the SPP gene is able to produce sufficient SPP protein for normal development under standard growth conditions
Deep EST profiling of developing fenugreek endosperm to investigate galactomannan biosynthesis and its regulation
Galactomannans are hemicellulosic polysaccharides composed of a (1 → 4)-linked β-D-mannan backbone substituted with single-unit (1 → 6)-α-linked D-galactosyl residues. Developing fenugreek (Trigonella foenum-graecum) seeds are known to accumulate large quantities of galactomannans in the endosperm, and were thus used here as a model system to better understand galactomannan biosynthesis and its regulation. We first verified the specific deposition of galactomannans in developing endosperms and determined that active accumulation occurred from 25 to 38 days post anthesis (DPA) under our growth conditions. We then examined the expression levels during seed development of ManS and GMGT, two genes encoding backbone and side chain synthetic enzymes. Based on transcript accumulation dynamics for ManS and GMGT, cDNA libraries were constructed using RNA isolated from endosperms at four ages corresponding to before, at the beginning of, and during active galactomannan deposition. DNA from these libraries was sequenced using the 454 sequencing technology to yield a total of 1.5 million expressed sequence tags (ESTs). Through analysis of the EST profiling data, we identified genes known to be involved in galactomannan biosynthesis, as well as new genes that may be involved in this process, and proposed a model for the flow of carbon from sucrose to galactomannans. Measurement of in vitro ManS and GMGT activities and analysis of sugar phosphate and nucleotide sugar levels in the endosperms of developing fenugreek seeds provided data consistent with this model. In vitro enzymatic assays also revealed that the ManS enzyme from fenugreek endosperm preferentially used GDP-mannose as the substrate for the backbone synthesis
Response of cell wall composition and RNA-seq transcriptome to methyl-jasmonate in Brachypodium distachyon callus
Main conclusion: Methyl-jasmonate induces large increases in p-coumarate linked to arabinoxylan in Brachypodium and in abundance of GT61 and BAHD family transcripts consistent with a role in synthesis of this linkage. Jasmonic acid (JA) signalling is required for many stress responses in plants, inducing large changes in the transcriptome, including up-regulation of transcripts associated with lignification. However, less is known about the response to JA of grass cell walls and the monocot-specific features of arabinoxylan (AX) synthesis and acylation by ferulic acid (FA) and para-coumaric acid (pCA). Here, we show that methyl-jasmonate (MeJA) induces moderate increases in FA monomer, > 50% increases in FA dimers, and five–sixfold increases in pCA ester-linked to cell walls in Brachypodium callus. Direct measurement of arabinose acylated by pCA (Araf-pCA) indicated that most or all the increase in cell-wall pCA was due to pCA ester-linked to AX. Analysis of the RNA-seq transcriptome of the callus response showed that these cell-wall changes were accompanied by up-regulation of members of the GT61 and BAHD gene families implicated in AX decoration and acylation; two BAHD paralogues were among the most up-regulated cell-wall genes (seven and fivefold) after 24 h exposure to MeJA. Similar responses to JA of orthologous BAHD and GT61 transcripts are present in the RiceXPro public expression data set for rice seedlings, showing that they are not specific to Brachypodium or to callus. The large response of AX-pCA to MeJA may, therefore, indicate an important role for this linkage in response of primary cell walls of grasses to JA signalling
- …