26,461 research outputs found
Scintillation Caustics in Planetary Occultation Light Curves
We revisit the GSC5249-01240 light curve obtained during its occultation by
Saturn's North polar region. In addition to refractive scintillations, the
power spectrum of intensity fluctuations shows an enhancement of power between
refractive and diffractive regimes. We identify this excess power as due to
high amplitude spikes in the light curve and suggest that these spikes are due
to caustics associated with ray crossing situations. The flux variation in
individual spikes follows the expected caustic behavior, including diffraction
fringes which we have observed for the first time in a planetary occultation
light curve. The presence of caustics in scintillation light curves require an
inner scale cut off to the power spectrum of underlying density fluctuations
associated with turbulence. Another possibility is the presence of gravity
waves in the atmosphere. While occultation light curves previously showed the
existence of refractive scintillations, a combination of small projected
stellar size and a low relative velocity during the event have allowed us to
identify caustics in this occultation. This has led us to re-examine previous
data sets, in which we have also found likely examples of caustics.Comment: 4 pages, 3 figures; ApJL submitte
Modeling material failure with a vectorized routine
The computational aspects of modelling material failure in structural wood members are presented with particular reference to vector processing aspects. Wood members are considered to be highly orthotropic, inhomogeneous, and discontinuous due to the complex microstructure of wood material and the presence of natural growth characteristics such as knots, cracks and cross grain in wood members. The simulation of strength behavior of wood members is accomplished through the use of a special purpose finite element/fracture mechanics routine, program STARW (Strength Analysis Routine for Wood). Program STARW employs quadratic finite elements combined with singular crack tip elements in a finite element mesh. Vector processing techniques are employed in mesh generation, stiffness matrix formation, simultaneous equation solution, and material failure calculations. The paper addresses these techniques along with the time and effort requirements needed to convert existing finite element code to a vectorized version. Comparisons in execution time between vectorized and nonvectorized routines are provided
Space related biological and information studies Annual report, Mar. 1968 - Mar. 1969
Space related biotelemetry research - multichannel implantable telemeter, subcarrier oscillator, and ion concentration transducer
Space and related biological and instrumentation studies
Research and experimental effort was carried out on high-density photo-optical recorder design, implantable pH electrodes and the mangetic/doppler blood-flow sensor
A geometric approach to high resolution TVD schemes
A geometric approach, similar to Van Leer's MUSCL schemes, is used to construct a second-order accurate generalization of Godunov's method for solving scalar conservation laws. By making suitable approximations, a scheme is obtained which is easy to implement and total variation diminishing. The entropy condition is also investigated from the standpoint of the spreading of rarefaction waves. Quantitative information is obtained for Godunov's method on the rate of spreading which explain the kinks in rarefaction waves often observed at the sonic point
Analytical solution of two-layer beam taking into account interlayer slip and shear deformation
A mathematical model is proposed and its analytical solution derived for the analysis of the geometrically and materially linear two-layer beams with different material and geometric characteristics of an individual layer. The model takes into account the effect of the transverse shear deformation on displacements in each layer. The analytical study is carried out to evaluate the influence of the transverse shear deformation on the static and kinematic quantities. We study a simply supported two-layer planar beam subjected to the uniformly distributed load. Parametric studies have been performed to investigate the influence of shear by varying material and geometric parameters, such as interlayer slip modulus (K), flexural-to-shear moduli ratios (E/G) and span-to-depth ratios (L/h). The comparison of the results for vertical deflections shows that shear deformations are more important for high slip modulus, for ``short'' beams with small L/h ratios, and beams with high E/G ratios. In these cases, the effect of the shear deformations becomes significant and has to be addressed in design. It also becomes apparent that models, which consider the partial interaction between the layers, should be employed if beams have very flexible connections
Workshop on dimensional analysis for design, development, and research executives
The proceedings of a conference of research and development executives are presented. The purpose of the meeting was to develop an understanding of the conditions which are appropriate for the use of certain general management tools and those conditions which render these tools inappropriate. The verbatim statements of the participants are included to show the direction taken initially by the conference. Formal presentations of management techniques for research and development are developed
The development of thermally stable adhesives for titanium alloy and boron composite structures
Developing thermally stable adhesives for bonding titanium alloy and boron composite substrate
- …