15,816 research outputs found

    Finite momentum condensation in a pumped microcavity

    Full text link
    We calculate the absorption spectra of a semiconductor microcavity into which a non-equilibrium exciton population has been pumped. We predict strong peaks in the spectrum corresponding to collective modes analogous to the Cooper modes in superconductors and fermionic atomic gases. These modes can become unstable, leading to the formation of off-equilibrium quantum condensates. We calculate a phase diagram for condensation, and show that the dominant instabilities can be at a finite momentum. Thus we predict the formation of inhomogeneous condensates, similar to Fulde-Ferrel-Larkin-Ovchinnikov states.Comment: 7 pages, 4 figures, updated to accepted versio

    Theoretical Analysis of Acceptance Rates in Multigrid Monte Carlo

    Full text link
    We analyze the kinematics of multigrid Monte Carlo algorithms by investigating acceptance rates for nonlocal Metropolis updates. With the help of a simple criterion we can decide whether or not a multigrid algorithm will have a chance to overcome critial slowing down for a given model. Our method is introduced in the context of spin models. A multigrid Monte Carlo procedure for nonabelian lattice gauge theory is described, and its kinematics is analyzed in detail.Comment: 7 pages, no figures, (talk at LATTICE 92 in Amsterdam

    Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes

    Full text link
    We compare the properties of subwavelength imaging in the visible wavelength range for metal-dielectric multilayers operating in the canalization and the resonant tunnelling regimes. The analysis is based on the transfer matrix method and time domain simulations. We show that Point Spread Functions for the first two resonances in the canalization regime are approximately Gaussian in shape. Material losses suppress transmission for higher resonances, regularise the PSF but do not compromise the resolution. In the resonant tunnelling regime, the MTF may dramatically vary in their phase dependence. Resulting PSF may have a sub-wavelength thickness as well as may be broad with multiple maxima and a rapid phase modulation. We show that the width of PSF may be reduced by further propagation in free space, and we provide arguments to explain this surprising observation.Comment: 17 pages,12 figure

    An Extinction Study of the Taurus Dark Cloud Complex

    Get PDF
    We present a study of the detailed distribution of extinction in a region of the Taurus dark cloud complex. Our study uses new BVR images of the region, spectral classification data for 95 stars, and IRAS Sky Survey Atlas (ISSA) 60 and 100 micron images. We study the extinction of the region in four different ways, and we present the first inter-comparison of all these methods, which are: 1) using the color excess of background stars for which spectral types are known; 2) using the ISSA 60 and 100 micron images; 3) using star counts; and 4) using an optical (V and R) version of the average color excess method used by Lada et al. (1994). We find that all four methods give generally similar results, with important exceptions. To study the structure in the dust distribution, we compare the ISSA extinction and the extinction measured for individual stars. From the comparison, we conclude that in the relatively low extinction regions studied, with 0.9 < A_V < 3.0 mag (away from filamentary dark clouds and IRAS cores), there are no fluctuations in the dust column density greater than 45% (at the 99.7% confidence level), on scales smaller than 0.2 pc. We also report the discovery of a previously unknown stellar cluster behind the Taurus dark cloud near R.A 4h19m00s, Dec. 27:30:00 (B1950)Comment: 49 pages (which include 6 pages of tables and 6 pages of figures

    Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle

    Get PDF
    We show that, when a gold nanoparticle is coated by a thin layer of nematic liquid crystal, the deformation produced by the nanoparticle surface can enhance the splitting of the nanoparticle surface plasmon. We consider three plausible liquid crystal director configurations in zero electric field: boojum pair (north-south pole configuration), baseball (tetrahedral), and homogeneous. From a calculation using the Discrete Dipole Approximation, we find that the surface plasmon splitting is largest for the boojum pair, intermediate for the homogeneous, and smallest for the baseball configuration. The boojum pair results are in good agreement with experiment. We conclude that the nanoparticle surface has a strong effect on the director orientation, but, surprisingly, that this deformation can actually enhance the surface plasmon splitting.Comment: 5 pages, 3 figures To be published in PR

    Resonant Metalenses for Breaking the Diffraction Barrier

    Full text link
    We introduce the resonant metalens, a cluster of coupled subwavelength resonators. Dispersion allows the conversion of subwavelength wavefields into temporal signatures while the Purcell effect permits an efficient radiation of this information in the far-field. The study of an array of resonant wires using microwaves provides a physical understanding of the underlying mechanism. We experimentally demonstrate imaging and focusing from the far-field with resolutions far below the diffraction limit. This concept is realizable at any frequency where subwavelength resonators can be designed.Comment: 4 pages, 3 figure

    Transition temperature of a dilute homogeneous imperfect Bose gas

    Full text link
    The leading-order effect of interactions on a homogeneous Bose gas is theoretically predicted to shift the critical temperature by an amount \Delta\Tc = # a_{scatt} n^{1/3} T_0 from the ideal gas result T_0, where a_{scatt} is the scattering length and n is the density. There have been several different theoretical estimates for the numerical coefficient #. We claim to settle the issue by measuring the numerical coefficient in a lattice simulation of O(2) phi^4 field theory in three dimensions---an effective theory which, as observed previously in the literature, can be systematically matched to the dilute Bose gas problem to reproduce non-universal quantities such as the critical temperature. We find # = 1.32 +- 0.02.Comment: 4 pages, submitted to Phys. Rev. Lett; minor changes due to improvement of analysis in the longer companion pape

    Moderate deviations for the determinant of Wigner matrices

    Full text link
    We establish a moderate deviations principle (MDP) for the log-determinant logdet(Mn)\log | \det (M_n) | of a Wigner matrix MnM_n matching four moments with either the GUE or GOE ensemble. Further we establish Cram\'er--type moderate deviations and Berry-Esseen bounds for the log-determinant for the GUE and GOE ensembles as well as for non-symmetric and non-Hermitian Gaussian random matrices (Ginibre ensembles), respectively.Comment: 20 pages, one missing reference added; Limit Theorems in Probability, Statistics and Number Theory, Springer Proceedings in Mathematics and Statistics, 201

    The composition of cosmic rays near the Bend (10 to the 15th power eV) from a study of muons in air showers at sea level

    Get PDF
    The distribution of muons near shower cores was studied at sea level at Fermilab using the E594 neutrino detector to sample the muon with E testing 3 GeV. These data are compared with detailed Monte Carlo simulations to derive conclusions about the composition of cosmic rays near the bend in the all particle spectrum. Monte Carlo simulations generating extensive air showers (EAS) with primary energy in excess of 50 TeV are described. Each shower record contains details of the electron lateral distribution and the muon and hadron lateral distributions as a function of energy, at the observation level of 100g/cm. The number of detected electrons and muons in each case was determined by a Poisson fluctuation of the number incident. The resultant predicted distribution of muons, electrons, the rate events are compared to those observed. Preliminary results on the rate favor a heavy primary dominated cosmic ray spectrum in energy range 50 to 1000 TeV

    Neutron-proton pairing in the BCS approach

    Get PDF
    We investigate the BCS treatment of neutron-proton pairing involving time-reversed orbits. We conclude that an isospin-symmetric hamiltonian, treated with the help of the generalized Bogolyubov transformation, fails to describe the ground state pairing properties correctly. In order for the np isovector pairs to coexist with the like-particle pairs, one has to break the isospin symmetry of the hamiltonian by artificially increasing the strength of np pairing interaction above its isospin symmetric value. We conjecture that the np isovector pairing represents part (or most) of the congruence energy (Wigner term) in nuclear masses.Comment: 9 pages, RevTex, submitted to Phys. Rev.
    corecore