335 research outputs found

    On the number of simple arrangements of five double pseudolines

    Get PDF
    We describe an incremental algorithm to enumerate the isomorphism classes of double pseudoline arrangements. The correction of our algorithm is based on the connectedness under mutations of the spaces of one-extensions of double pseudoline arrangements, proved in this paper. Counting results derived from an implementation of our algorithm are also reported.Comment: 24 pages, 16 figures, 6 table

    The Nakayama automorphism of the almost Calabi-Yau algebras associated to SU(3) modular invariants

    Get PDF
    We determine the Nakayama automorphism of the almost Calabi-Yau algebra A associated to the braided subfactors or nimrep graphs associated to each SU(3) modular invariant. We use this to determine a resolution of A as an A-A bimodule, which will yield a projective resolution of A.Comment: 46 pages which constitutes the published version, plus an Appendix detailing some long calculations. arXiv admin note: text overlap with arXiv:1110.454

    Energy Dependence of the Ratio of Isovector Effective Interaction Strengths |J_στ/J_τ| from 0° (p,n) Cross Sections

    Get PDF
    This work was supported by the National Science Foundation Grants NSF PHY 78-22774 A03, NSF PHY 81-14339, and by Indiana Universit

    Gamow-Teller Resonances Observed in 90,92,94-Zr(p,n) at 120 and 160 MeV

    Get PDF
    Supported by the National Science Foundation and Indiana Universit

    General Features of the Gamow-Teller Resonances

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 78-22774 A02 & A03 and by Indiana Universit

    Strong Spin-Flip Transitions in (p,n) Reactions

    Get PDF
    This work was supported by National Science Foundation Grant PHY 76-84033 and Indiana Universit

    Splitting of the Dipole and Spin-Dipole Resonances

    Full text link
    Cross sections for the 90,92,94Zr(p,n) reactions were measured at energies of 79.2 and 119.4 MeV. A phenomenological model was developed to describe the variation with bombarding energy of the position of the L=1 peak observed in these and other (p,n) reactions. The model yields the splitting between the giant dipole and giant spin dipole resonances. Values of these splittings are obtained for isotopes of Zr and Sn and for 208Pb.Comment: 14 pages, 4 figure

    Salvage of ribose from uridine or RNA supports glycolysis in nutrient-limited conditions.

    Get PDF
    Glucose is vital for life, serving as both a source of energy and carbon building block for growth. When glucose is limiting, alternative nutrients must be harnessed. To identify mechanisms by which cells can tolerate complete loss of glucose, we performed nutrient-sensitized genome-wide genetic screens and a PRISM growth assay across 482 cancer cell lines. We report that catabolism of uridine from the medium enables the growth of cells in the complete absence of glucose. While previous studies have shown that uridine can be salvaged to support pyrimidine synthesis in the setting of mitochondrial oxidative phosphorylation deficiency <sup>1</sup> , our work demonstrates that the ribose moiety of uridine or RNA can be salvaged to fulfil energy requirements via a pathway based on: (1) the phosphorylytic cleavage of uridine by uridine phosphorylase UPP1/UPP2 into uracil and ribose-1-phosphate (R1P), (2) the conversion of uridine-derived R1P into fructose-6-P and glyceraldehyde-3-P by the non-oxidative branch of the pentose phosphate pathway and (3) their glycolytic utilization to fuel ATP production, biosynthesis and gluconeogenesis. Capacity for glycolysis from uridine-derived ribose appears widespread, and we confirm its activity in cancer lineages, primary macrophages and mice in vivo. An interesting property of this pathway is that R1P enters downstream of the initial, highly regulated steps of glucose transport and upper glycolysis. We anticipate that 'uridine bypass' of upper glycolysis could be important in the context of disease and even exploited for therapeutic purposes

    Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential

    Full text link
    We address a two-dimensional nonlinear elliptic problem with a finite-amplitude periodic potential. For a class of separable symmetric potentials, we study the bifurcation of the first band gap in the spectrum of the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to describe this bifurcation. The coupled-mode equations are derived by the rigorous analysis based on the Fourier--Bloch decomposition and the Implicit Function Theorem in the space of bounded continuous functions vanishing at infinity. Persistence of reversible localized solutions, called gap solitons, beyond the coupled-mode equations is proved under a non-degeneracy assumption on the kernel of the linearization operator. Various branches of reversible localized solutions are classified numerically in the framework of the coupled-mode equations and convergence of the approximation error is verified. Error estimates on the time-dependent solutions of the Gross--Pitaevskii equation and the coupled-mode equations are obtained for a finite-time interval.Comment: 32 pages, 16 figure

    Energy Systematics of the Giant Gamow-Teller Resonance and a Charge-Exchange Dipole Spin-Flip Resonance

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 78-22774 A02 & A03 and by Indiana Universit
    corecore