29,644 research outputs found
Almost sure invariance principle for random piecewise expanding maps
We prove a fiberwise almost sure invariance principle for random piecewise
expanding transformations in one and higher dimensions using recent
developments on martingale techniques
Many-body effects in doped graphene on a piezoelectric substrate
We investigate the many-body properties of graphene on top of a piezoelectric
substrate, focusing on the interaction between the graphene electrons and the
piezoelectric acoustic phonons. We calculate the electron and phonon
self-energies as well as the electron mobility limited by the substrate
phonons. We emphasize the importance of the proper screening of the
electron-phonon vertex and discuss the various limiting behaviors as a function
of electron energy, temperature, and doping level. The effect on the graphene
electrons of the piezoelectric acoustic phonons is compared with that of the
intrinsic deformation acoustic phonons of graphene. Substrate phonons tend to
dominate over intrinsic ones for low doping levels at high and low
temperatures.Comment: 13 pages, 8 figure
Exploring Vortex Dynamics in the Presence of Dissipation: Analytical and Numerical Results
In this paper, we systematically examine the stability and dynamics of
vortices under the effect of a phenomenological dissipation used as a
simplified model for the inclusion of the effect of finite temperatures in
atomic Bose-Einstein condensates. An advantage of this simplified model is that
it enables an analytical prediction that can be compared directly (and
favorably) to numerical results. We then extend considerations to a case of
considerable recent experimental interest, namely that of a vortex dipole and
observe good agreement between theory and numerical computations in both the
stability properties (eigenvalues of the vortex dipole stationary states) and
the dynamical evolution of such configurations.Comment: 12 pages, 5 figures, accepted by PR
Dynamics and Manipulation of Matter-Wave Solitons in Optical Superlattices
We analyze the existence and stability of bright, dark, and gap matter-wave
solitons in optical superlattices. Then, using these properties, we show that
(time-dependent) ``dynamical superlattices'' can be used to controllably place,
guide, and manipulate these solitons. In particular, we use numerical
experiments to displace solitons by turning on a secondary lattice structure,
transfer solitons from one location to another by shifting one superlattice
substructure relative to the other, and implement solitonic ``path-following'',
in which a matter wave follows the time-dependent lattice substructure into
oscillatory motion.Comment: 6 pages, revtex, 6 figures, to appear in Physics Letters A; minor
modifications from last versio
Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire
We study the metal-insulator transition in individual self-assembled quantum
wires and report optical evidences of metallic liquid condensation at low
temperatures. Firstly, we observe that the temperature and power dependence of
the single nanowire photoluminescence follow the evolution expected for an
electron-hole liquid in one dimension. Secondly, we find novel spectral
features that suggest that in this situation the expanding liquid condensate
compresses the exciton gas in real space. Finally, we estimate the critical
density and critical temperature of the phase transition diagram at
cm and K, respectively.Comment: 4 pages, 5 figure
Riemann Surfaces of genus g with an automorphism of order p prime and p>g
The present work completes the classification of the compact Riemann surfaces
of genus g with an analytic automorphism of order p (prime number) and p > g.
More precisely, we construct a parameteriza- tion space for them, we compute
their groups of uniformization and we compute their full automorphism groups.
Also, we give affine equations for special cases and some implications on the
components of the singular locus of the moduli space of smooth curves of genus
g.Comment: 28 pages, 5 figure
- …