4,831 research outputs found

    Discrete approximations for strict convex continuous time problems and duality

    Get PDF
    We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory.8110

    Phase diagram of a random-anisotropy mixed-spin Ising model

    Full text link
    We investigate the phase diagram of a mixed spin-1/2--spin-1 Ising system in the presence of quenched disordered anisotropy. We carry out a mean-field and a standard self-consistent Bethe--Peierls calculation. Depending on the amount of disorder, there appear novel transition lines and multicritical points. Also, we report some connections with a percolation problem and an exact result in one dimension.Comment: 8 pages, 4 figures, accepted for publication in Physical Review

    Ab-initio study of the relation between electric polarization and electric field gradients in ferroelectrics

    Full text link
    The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO3, KNbO3, PbTiO3 and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their link with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study ferroelectric order when standard techniques to measure polarization are not easily applied.Comment: 9 pages, 6 figures, 5 tables, corrected typos, as published in Phys. Rev.

    On the exact Foldy-Wouthuysen transformation for a Dirac spinor in torsion and other CPT and Lorentz violating backgrounds

    Full text link
    We discuss the possibility to perform and use the exact Foldy-Wouthuysen transformation (EFWT) for the Dirac spinor coupled to different CPT and Lorentz violating terms. The classification of such terms is performed, selecting those of them which admit EFWT. For the particular example of an axial vector field, which can be associated with the completely antisymmetric torsion, we construct an explicit EFWT in the case when only a timelike component of this axial vector is present. In the cases when EFWT is not possible, one can still use the corresponding technique for deriving the perturbative Foldy-Wouthuysen transformation, as is illustrated in a particular example in the Appendix

    Vector Meson Production in Ultraperipheral Heavy Ion Collisions

    Full text link
    The ultraperipheral heavy ion collisions (UPC's) are an important alternative to study the QCD dynamics until the next generation of e+e−/ep/eAe^+e^-/ ep / eA colliders become reality. Due to the coherent action of all the protons in the nucleus, the electromagnetic field is very strong and the resulting flux of equivalent photons is large, which allows to study two-photon as well as photonuclear interactions at high energies. In this paper we present a brief review of the vector meson production in UPC's at high energies using the QCD color dipole approach to describe their photonuclear production and the perturbative QCD Pomeron (BFKL dynamics) to describe the double meson production in photon-photon process. Predictions for rates and integrated cross sections are presented for energies of RHIC and LHC.Comment: 16 pages, 1 figure. Version to be published in Journal of Physics G: Nuclear and Particle Physic

    Exact Foldy-Wouthuysen transformation for gravitational waves and magnetic field background

    Full text link
    We consider an exact Foldy-Wouthuysen transformation for the Dirac spinor field on the combined background of a gravitational wave and constant uniform magnetic field. By taking the classical limit of the spinor field Hamiltonian we arrive at the equations of motion for the non-relativistic spinning particle. Two different kinds of the gravitational fields are considered and in both cases the effect of the gravitational wave on the spinor field and on the corresponding spinning particle may be enforced by the sufficiently strong magnetic field. This result can be relevant for the astrophysical applications and, in principle, useful for creating the gravitational wave detectors based on atomic physics and precise interferometry
    • …
    corecore