6,576 research outputs found

    A hyperbolic conservation law and particle systems

    Get PDF
    In these notes we consider two particle systems: the totally asymmetric simple exclusion process and the totally asymmetric zero-range process. We introduce the notion of hydrodynamic limit and describe the partial differential equation that governs the evolution of the conserved quantity – the density of particles p(t,.). This equation is a hyperbolic conservation law of type ətp(p, u) + vF(p(t, u)) = 0, where the flux F is a concave function. Taking these systems evolving on the Euler time scale tN, a central limit theorem for the empirical measure holds and the temporal evolution of the limit density field is deterministic. By taking the system in a reference frame with constant velocity, the limit density field does not evolve in time. In order to have a non-trivial limit, time needs to be speeded up and for time scales smaller than tN 4=3, there is still no temporal evolution. As a consequence, the current across a characteristic vanishes up to this longer time scale.Fundação para a Ciência e a Tecnologia (FCT) - bolsa SFRH/BPD/39991/2007Fundação Calouste Gulbenkian - projecto "Hydrodynamic limit of particle systems

    Strong curvature singularities in quasispherical asymptotically de Sitter dust collapse

    Get PDF
    We study the occurrence, visibility, and curvature strength of singularities in dust-containing Szekeres spacetimes (which possess no Killing vectors) with a positive cosmological constant. We find that such singularities can be locally naked, Tipler strong, and develop from a non-zero-measure set of regular initial data. When examined along timelike geodesics, the singularity's curvature strength is found to be independent of the initial data.Comment: 16 pages, LaTeX, uses IOP package, 2 eps figures; accepted for publication in Class. Quantum Gra

    Different faces of the phantom

    Full text link
    The SNe type Ia data admit that the Universe today may be dominated by some exotic matter with negative pressure violating all energy conditions. Such exotic matter is called {\it phantom matter} due to the anomalies connected with violation of the energy conditions. If a phantom matter dominates the matter content of the universe, it can develop a singularity in a finite future proper time. Here we show that, under certain conditions, the evolution of perturbations of this matter may lead to avoidance of this future singularity (the Big Rip). At the same time, we show that local concentrations of a phantom field may form, among other regular configurations, black holes with asymptotically flat static regions, separated by an event horizon from an expanding, singularity-free, asymptotically de Sitter universe.Comment: 6 pages, presented at IRGAC 2006, Barcelona, 11-15 July 200

    Scaling limits of a tagged particle in the exclusion process with variable diffusion coefficient

    Full text link
    We prove a law of large numbers and a central limit theorem for a tagged particle in a symmetric simple exclusion process in the one-dimensional lattice with variable diffusion coefficient. The scaling limits are obtained from a similar result for the current through -1/2 for a zero-range process with bond disorder. For the CLT, we prove convergence to a fractional Brownian motion of Hurst exponent 1/4.Comment: 9 page

    Flexor digitorum brevis tendon transfer to the flexor digitorum longus tendon according to Valtin in posttraumatic flexible claw toe deformity due to extrinsic toe flexor shortening

    Get PDF
    AbstractClaw toe deformity after posterior leg compartment syndrome is rare but incapacitating. When the mechanism is flexor digitorum longus (FDL) shortening due to ischemic contracture of the muscle after posterior leg syndrome, a good treatment option is the Valtin procedure in which the flexor digitorum brevis (FDB) is transferred to the FDL after FDL tenotomy. The Valtin procedure reduces the deformity by lengthening and reactivating the FDL. Here, we report the outcomes of FDB to FDL transfer according to Valtin in 10 patients with posttraumatic claw toe deformity treated a mean of 34 months after the injury. Toe flexion was restored in all 10 patients, with no claw toe deformity even during dorsiflexion of the ankle

    The anisotropic XY model on the inhomogeneous periodic chain

    Full text link
    The static and dynamic properties of the anisotropic XY-model (s=1/2)(s=1/2) on the inhomogeneous periodic chain, composed of NN cells with nn different exchange interactions and magnetic moments, in a transverse field h,h, are determined exactly at arbitrary temperatures. The properties are obtained by introducing the Jordan-Wigner fermionization and by reducing the problem to a diagonalization of a finite matrix of nthnth order. The quantum transitions are determined exactly by analyzing, as a function of the field, the induced magnetization 1/n\sum_{m=1}^{n}\mu_{m}\left (jj denotes the cell, mm the site within the cell, μm\mu_{m} the magnetic moment at site mm within the cell) and the spontaneous magnetization 1/n∑m=1n<Sj,mx,>1/n\sum_{m=1}^{n}\left< S_{j,m}^{x},\right> which is obtained from the correlations <Sj,mxSj+r,mx>\left< S_{j,m}^{x}S_{j+r,m}^{x}\right> for large spin separations. These results, which are obtained for infinite chains, correspond to an extension of the ones obtained by Tong and Zhong(\textit{Physica B} \textbf{304,}91 (2001)). The dynamic correlations, <Sj,mz(t)Sj′,m′z(0)>\left< S_{j,m}^{z}(t)S_{j^{\prime},m^{\prime}}^{z}(0)\right>, and the dynamic susceptibility, χqzz(ω),\chi_{q}^{zz}(\omega), are also obtained at arbitrary temperatures. Explicit results are presented in the limit T=0, where the critical behaviour occurs, for the static susceptibility χqzz(0)\chi_{q}^{zz}(0) as a function of the transverse field hh, and for the frequency dependency of dynamic susceptibility χqzz(ω)\chi_{q}^{zz}(\omega).Comment: 33 pages, 13 figures, 01 table. Revised version (minor corrections) accepted for publiction in Phys. Rev.

    Crossover to the KPZ equation

    Get PDF
    We characterize the crossover regime to the KPZ equation for a class of one-dimensional weakly asymmetric exclusion processes. The crossover depends on the strength asymmetry an2−γan^{2-\gamma} (a,γ>0a,\gamma>0) and it occurs at γ=1/2\gamma=1/2. We show that the density field is a solution of an Ornstein-Uhlenbeck equation if γ∈(1/2,1]\gamma\in(1/2,1], while for γ=1/2\gamma=1/2 it is an energy solution of the KPZ equation. The corresponding crossover for the current of particles is readily obtained.Comment: Published by Annales Henri Poincare Volume 13, Number 4 (2012), 813-82
    • …
    corecore