20,609 research outputs found
An Exploratory Review of Bangladesh Gas Sector: Latest Evidence and Areas of Further Research
This paper reviews and explores the latest evidence from the gas sector of Bangladesh and highlights areas that would benefit from further research. The study reported actual consumption of gas by different sectors; projection of demands by various studies and plan documents; estimates of gas reserves and potential by various studies; and operation of the International Oil Companies (IOCs) in Bangladesh.Gas Sector, Bangladesh
Quantifying Equivocation for Finite Blocklength Wiretap Codes
This paper presents a new technique for providing the analysis and comparison
of wiretap codes in the small blocklength regime over the binary erasure
wiretap channel. A major result is the development of Monte Carlo strategies
for quantifying a code's equivocation, which mirrors techniques used to analyze
normal error correcting codes. For this paper, we limit our analysis to
coset-based wiretap codes, and make several comparisons of different code
families at small and medium blocklengths. Our results indicate that there are
security advantages to using specific codes when using small to medium
blocklengths.Comment: Submitted to ICC 201
Flexible programmable networking: A reflective, component-based approach
The need for programmability and adaptability in networking systems is becoming increasingly important. More specifically, the challenge is in the ability to add services rapidly, and be able to deploy, configure and reconfigure them as easily as possible. Such demand is creating a considerable shift in the way networks are expected to operate in the future. This is the main aim of programmable networking research community, and in our project we are investigating a component-based approach to the structuring of programmable networking software. Our intention is to apply the notion of components, component frameworks and reflection ubiquitously, thus accommodating all the different elements that comprise a programmable networking system
Bosonic effective action for interacting fermions
We compare different versions of a bosonic description for systems of
interacting fermions, with particular emphasis on the free energy functional.
The bosonic effective action makes the issue of symmetries particularly
transparent and we present for the Hubbard model an exact mapping between
repulsive and attractive interactions. A systematic expansion for the bosonic
effective action starts with a solution to the lowest order Schwinger-Dyson or
gap equation. We propose a two particle irreducible formulation of an exact
functional renormalization group equation for computations beyond leading
order. On this basis we suggest a renormalized gap equation. This approach is
compared with functional renormalization in a partially bosonized setting.Comment: new sections on exact mapping between attractive and repulsive
Hubbard model and relation between two-particle-irreducible formalism, 32
pages,1 figure,LaTe
Cooperative localization-delocalization in the high Tc cuprates
The intrinsic metastable crystal structure of the cuprates results in local
dynamical lattice instabilities, strongly coupled to the density fluctuations
of the charge carriers. They acquire in this way simultaneously both,
delocalized and localized features. It is responsible for a partial fractioning
of the Fermi surface, i.e., the Fermi surface gets hidden in a region around
the anti-nodal points, because of the opening of a pseudogap in the normal
state, arising from a partial charge localization. The high energy localized
single-particle features are a result of a segregation of the homogeneous
crystal structure into checker-board local nano-size structures, which breaks
the local translational and rotational symmetry. The pairing in such a system
is dynamical rather than static, whereby charge carriers get momentarily
trapped into pairs in a deformable dynamically fluctuating ligand environment.
We conclude that the intrinsically heterogeneous structure of the cuprates must
play an important role in this type of superconductivity.Comment: 14 pages, 8 figures, Proceedings of the "International Conference on
Condensed Matter Theories", Quito, 2009 Int. J. Mod. Phys. B 2010 (Accepted
The complex Sine-Gordon equation as a symmetry flow of the AKNS Hierarchy
It is shown how the complex sine-Gordon equation arises as a symmetry flow of
the AKNS hierarchy. The AKNS hierarchy is extended by the ``negative'' symmetry
flows forming the Borel loop algebra. The complex sine-Gordon and the vector
Nonlinear Schrodinger equations appear as lowest negative and second positive
flows within the extended hierarchy. This is fully analogous to the well-known
connection between the sine-Gordon and mKdV equations within the extended mKdV
hierarchy.
A general formalism for a Toda-like symmetry occupying the ``negative''
sector of sl(N) constrained KP hierarchy and giving rise to the negative Borel
sl(N) loop algebra is indicated.Comment: 8 pages, LaTeX, typos corrected, references update
Explaining why the uranian satellites have equatorial prograde orbits despite the large planetary obliquity
We show that the existence of prograde equatorial satellites is consistent with a collisional tilting scenario for Uranus. In fact, if the planet was surrounded by a proto-satellite disk at the time of the tilting and a massive ring of material was temporarily placed inside the Roche radius of the planet by the collision, the proto-satellite disk would have started to precess incoherently around the equator of the planet, up to a distance greater than that of Oberon. Collisional damping would then have collapsed it into a thin equatorial disk, from which the satellites eventually formed. The fact that the orbits of the satellites are prograde requires Uranus to have had a non-negligible initial obliquity (comparable to that of Neptune) before it was finally tilted to 98°
Fate of conjugated natural and synthetic steroid estrogens in crude sewage and activated sludge batch studies
This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Environmental Science & Technology, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/es801952h.Steroids are excreted from the human body in the conjugated form but are present in sewage influent and effluent as the free steroid, the major source of estrogenic activity observed in water courses. The fate of sulfate and glucuronide conjugated steroid estrogens was investigated in batch studies using activated sludge grown on synthetic sewage in a laboratory-scale Husmann simulation and crude sewage from the field. A clear distinction between the fate of sulfate and glucuronide conjugates was observed in both matrices, with sulfated conjugates proving more recalcitrant and glucuronide deconjugation preferential in crude sewage. For each conjugate, the free steroid was observed in the biotic samples. The degree of free steroid formation was dependent on the conjugate moiety, favoring the glucuronide. Subsequent degradation of the free steroid (and sorption to the activated sludge solid phase) was evaluated. Deconjugation followed the first order reaction rate with rate constants for 17α-ethinylestradiol 3-glucuronide, estriol 16α-glucuronide, and estrone 3-glucuronide determined as 0.32, 0.24, and 0.35 h respectively. The activated sludge solid retention time over the range of 3â9 days had 74 to 94% of sulfate conjugates remaining after 8 h. In contrast, a correlation between increasing temperature and decreasing 17α-ethinylestradiol 3-glucuronide concentrations in the activated sludge observed no conjugate present in the AS following 8 h at 22 °C Based on these batch studies and literature excretion profiles, a hypothesis is presented on which steroids and what form (glucuronide, sulfate, or free) will likely enter the sewage treatment plant.EPSR
On a partially reduced phase space quantisation of general relativity conformally coupled to a scalar field
The purpose of this paper is twofold: On the one hand, after a thorough
review of the matter free case, we supplement the derivations in our companion
paper on 'loop quantum gravity without the Hamiltonian constraint' with
calculational details and extend the results to standard model matter, a
cosmological constant, and non-compact spatial slices. On the other hand, we
provide a discussion on the role of observables, focussed on the situation of a
symmetry exchange, which is key to our derivation. Furthermore, we comment on
the relation of our model to reduced phase space quantisations based on
deparametrisation.Comment: 51 pages, 5 figures. v2: Gauge condition used shown to coincide with
CMC gauge. Minor clarifications and correction
- âŠ