6,030 research outputs found

    Evaluation of techniques for removal of spacecraft contaminants from activated carbon

    Get PDF
    Alternative techniques for the regeneration of carbon contaminated with various spacecraft contaminants were evaluated. Four different modes of regeneration were evaluated: (1) thermal desorption via vacuum, (2) thermal desorption via nitrogen purge, (3) in-situ catalytic oxidation of adsorbed contaminants, and (4) in-situ non-catalytic oxidation of adsorbed contaminants

    Constructive Multiuser Interference in Symbol Level Precoding for the MISO Downlink Channel

    Get PDF
    This paper investigates the problem of interference among the simultaneous multiuser transmissions in the downlink of multiple antennas systems. Using symbol level precoding, a new approach towards the multiuser interference is discussed along this paper. The concept of exploiting the interference between the spatial multiuser transmissions by jointly utilizing the data information (DI) and channel state information (CSI), in order to design symbol-level precoders, is proposed. In this direction, the interference among the data streams is transformed under certain conditions to useful signal that can improve the signal to interference noise ratio (SINR) of the downlink transmissions. We propose a maximum ratio transmission (MRT) based algorithm that jointly exploits DI and CSI to glean the benefits from constructive multiuser interference. Subsequently, a relation between the constructive interference downlink transmission and physical layer multicasting is established. In this context, novel constructive interference precoding techniques that tackle the transmit power minimization (min power) with individual SINR constraints at each user's receivers is proposed. Furthermore, fairness through maximizing the weighted minimum SINR (max min SINR) of the users is addressed by finding the link between the min power and max min SINR problems. Moreover, heuristic precoding techniques are proposed to tackle the weighted sum rate problem. Finally, extensive numerical results show that the proposed schemes outperform other state of the art techniques.Comment: Submitted to IEEE Transactions on Signal Processin

    Symbol Based Precoding in The Downlink of Cognitive MISO Channels

    Get PDF
    This paper proposes symbol level precoding in the downlink of a MISO cognitive system. The new scheme tries to jointly utilize the data and channel information to design a precoding that minimizes the transmit power at a cognitive base station (CBS); without violating the interference temperature constraint imposed by the primary system. In this framework, the data information is handled at symbol level which enables the characterization the intra-user interference among the cognitive users as an additional source of useful energy that should be exploited. A relation between the constructive multiuser transmissions and physical-layer multicast system is established. Extensive simulations are performed to validate the proposed technique and compare it with conventional techniques.Comment: CROWNCOM 201

    Contaminant removal from enclosed atmospheres by regenerable adsorbents

    Get PDF
    A system for removing contaminants from spacecraft atmospheres was studied, which utilizes catalyst-impregnated activated carbon followed by in-situ regeneration by low-temperature catalytic oxidation of the adsorbed contaminants. Platinum was deposited on activated carbon by liquid phase impregnation with chloroplatinic acid, followed by drying and high-temperature reduction. Results were obtained for the seven selected spacecraft contaminants by means of three experimental test systems. The results indicate that the contaminants could be removed by oxidation with very little loss in adsorptive capacity. The advantages of a catalyst-impregnated carbon for oxidative regeneration are found to be significant enough to warrent its use

    The impact of two-dimensional elastic disk

    Full text link
    The impact of a two-dimensional elastic disk with a wall is numerically studied. It is clarified that the coefficient of restitution (COR) decreases with the impact velocity. The result is not consistent with the recent quasi-static theory of inelastic collisions even for very slow impact. The abrupt drop of COR is found due to the plastic deformation of the disk, which is assisted by the initial internal motion.(to be published in J. Phys. Soc. Jpn.)Comment: 6 Pages,2 figure

    Magnetic Field Structure around Low-Mass Class 0 Protostars: B335, L1527 and IC348-SMM2

    Full text link
    We report new 350 micron polarization observations of the thermal dust emission from the cores surrounding the low-mass, Class 0 YSOs L1527, IC348-SMM2 and B335. We have inferred magnetic field directions from these observations, and have used them together with results in the literature to determine whether magnetically regulated core-collapse and star-formation models are consistent with the observations. These models predict a pseudo-disk with its symmetry axis aligned with the core magnetic field. The models also predict a magnetic field pinch structure on a scale less than or comparable to the infall radii for these sources. In addition, if the core magnetic field aligns (or nearly aligns) the core rotation axis with the magnetic field before core collapse, then the models predict the alignment (or near alignment) of the overall pinch field structure with the bipolar outflows in these sources. We show that if one includes the distorting effects of bipolar outflows on magnetic fields, then in general the observational results for L1527 and IC348-SMM2 are consistent with these magnetically regulated models. We can say the same for B335 only if we assume the distorting effects of the bipolar outflow on the magnetic fields within the B335 core are much greater than for L1527 and IC348-SMM2. We show that the energy densities of the outflows in all three sources are large enough to distort the magnetic fields predicted by magnetically regulated models.Comment: Accepted for publication in The Astrophysical Journa

    A Direct Measurement of the Total Gas Column Density in Orion KL

    Get PDF
    The large number of high-J lines of C^(18)O available via the Herschel Space Observatory provide an unprecedented ability to model the total CO column density in hot cores. Using the emission from all the observed lines (up to J = 15-14), we sum the column densities in each individual level to obtain the total column after correcting for the population in the unobserved states. With additional knowledge of source size, V_(LSR), and line width, and both local thermodynamic equilibrium (LTE) and non-LTE modeling, we have determined the total C^(18)O column densities in the Extended Ridge, Outflow/Plateau, Compact Ridge, and Hot Core components of Orion KL to be 1.4 × 10^(16) cm^(–2), 3.5 × 10^(16) cm^(–2), 2.2 × 10^(16) cm^(–2), and 6.2 × 10^(16) cm^(–2), respectively. We also find that the C^(18)O/C^(17)O abundance ratio varies from 1.7 in the Outflow/Plateau, 2.3 in the Extended Ridge, 3.0 in the Hot Core, and to 4.1 in the Compact Ridge. This is in agreement with models in which regions with higher ultraviolet radiation fields selectively dissociate C^(17)O, although care must be taken when interpreting these numbers due to the size of the uncertainties in the C^(18)O/C^(17)O abundance ratio
    • 

    corecore