32,875 research outputs found

    Real fluid properties of normal and parahydrogen

    Get PDF
    Computer program calculates the real fluid properties of normal or parahydrogen using a library of single function calls without initial estimates. Accurate transport and thermodynamic properties of molecular hydrogen are needed for advanced propulsion systems

    Exact Nonperturbative Unitary Amplitudes for 1->N Transitions

    Full text link
    I present an extension to arbitrary N of a previously proposed field theoretic model, in which unitary amplitudes for 1>81->8 processes were obtained. The Born amplitude in this extension has the behavior A(1>N)tree = gN1 N!A(1->N)^{tree}\ =\ g^{N-1}\ N! expected in a bosonic field theory. Unitarity is violated when A(1>N)>1|A(1->N)|>1, or when N>Ncrite/g.N>\N_crit\simeq e/g. Numerical solutions of the coupled Schr\"odinger equations shows that for weak coupling and a large range of N>\ncrit, the exact unitary amplitude is reasonably fit by a factorized expression |A(1->N)| \sim (0.73 /N) \cdot \exp{(-0.025/\g2)}. The very small size of the coefficient 1/\g2 , indicative of a very weak exponential suppression, is not in accord with standard discussions based on saddle point analysis, which give a coefficient 1. \sim 1.\ The weak dependence on NN could have experimental implications in theories where the exponential suppression is weak (as in this model). Non-perturbative contributions to few-point correlation functions in this theory would arise at order $K\ \simeq\ \left((0.05/\g2)+ 2\ ln{N}\right)/ \ ln{(1/\g2)}inanexpansioninpowersof in an expansion in powers of \g2.$Comment: 11 pages, 3 figures (not included

    On the Nature and Location of the Microlenses

    Get PDF
    This paper uses the caustic crossing events in the microlens data sets to explore the nature and location of the lenses. We conclude that the large majority of lenses, whether they are luminous or dark, are likely to be binaries. Further, we demonstrate that blending is an important feature of all the data sets. An additional interpretation suggested by the data, that the caustic crossing events along the directions to the Magellanic Clouds are due to lenses located in the Clouds, implies that most of the LMC/SMC events to date are due to lenses in the Magellanic Clouds. All of these conclusions can be tested. If they are correct, a large fraction of lenses along the direction to the LMC may be ordinary stellar binary systems, just as are the majority of the lenses along the direction to the Bulge. Thus, a better understanding of the larger-than-anticipated value derived for the Bulge optical depth may allow us to better interpret the large value derived for the optical depth to the LMC. Indeed, binarity and blending in the data sets may illuminate connections among several other puzzles: the dearth of binary-source light curves, the dearth of non-caustic-crossing perturbed binary-lens events, and the dearth of obviously blended point-lens events.Comment: 15 pages, 2 figures. Submitted to the Astrophysical Journal Letters, 4 January 199

    Evidence of Skyrmion excitations about ν=1\nu =1 in n-Modulation Doped Single Quantum Wells by Inter-band Optical Transmission

    Full text link
    We observe a dramatic reduction in the degree of spin-polarization of a two-dimensional electron gas in a magnetic field when the Fermi energy moves off the mid-point of the spin-gap of the lowest Landau level, ν=1\nu=1. This rapid decay of spin alignment to an unpolarized state occurs over small changes to both higher and lower magnetic field. The degree of electron spin polarization as a function of ν\nu is measured through the magneto-absorption spectra which distinguish the occupancy of the two electron spin states. The data provide experimental evidence for the presence of Skyrmion excitations where exchange energy dominates Zeeman energy in the integer quantum Hall regime at ν=1\nu=1

    Exciton mediated one phonon resonant Raman scattering from one-dimensional systems

    Full text link
    We use the Kramers-Heisenberg approach to derive a general expression for the resonant Raman scattering cross section from a one-dimensional (1D) system explicitly accounting for excitonic effects. The result should prove useful for analyzing the Raman resonance excitation profile lineshapes for a variety of 1D systems including carbon nanotubes and semiconductor quantum wires. We apply this formalism to a simple 1D model system to illustrate the similarities and differences between the free electron and correlated electron-hole theories.Comment: 10 pages, 6 figure

    Properties of Nucleon Resonances by means of a Genetic Algorithm

    Get PDF
    We present an optimization scheme that employs a Genetic Algorithm (GA) to determine the properties of low-lying nucleon excitations within a realistic photo-pion production model based upon an effective Lagrangian. We show that with this modern optimization technique it is possible to reliably assess the parameters of the resonances and the associated error bars as well as to identify weaknesses in the models. To illustrate the problems the optimization process may encounter, we provide results obtained for the nucleon resonances Δ\Delta(1230) and Δ\Delta(1700). The former can be easily isolated and thus has been studied in depth, while the latter is not as well known experimentally.Comment: 12 pages, 10 figures, 3 tables. Minor correction

    Using Astrometry to Deblend Microlensing Events

    Get PDF
    We discuss the prospect of deblending microlensing events by observing astrometric shifts of the lensed stars. Since microlensing searches are generally performed in very crowded fields, it is expected that stars will be confusion limited rather than limited by photon statistics. By performing simulations of events in crowded fields, we find that if we assume a dark lens and that the lensed star obeys a power law luminosity function, n(L)Lβn(L)\propto L^{-\beta}, over half the simulated events show a measurable astrometric shift. Our simulations included 20000 stars in a 256×256256\times 256 Nyquist sampled CCD frame. For β=2\beta=2, we found that 58% of the events were significantly blended (F/Ftot0.9)(F_{\ast}/F_{tot}\leq 0.9), and of those, 73% had a large astrometric shift (0.5pixels)(\geq 0.5 pixels). Likewise, for β=3\beta=3, we found that 85% of the events were significantly blended, and that 85% of those had large shifts. Moreover, the shift is weakly correlated to the degree of blending, suggesting that it may be possible not only to detect the existence of a blend, but also to deblend events statistically using shift information.Comment: 24 pages, 7 postscript Figure

    Chirality dependence of the radial breathing phonon mode density in single wall carbon nanotubes

    Full text link
    A mass and spring model is used to calculate the phonon mode dispersion for single wall carbon nanotubes (SWNTs) of arbitrary chirality. The calculated dispersions are used to determine the chirality dependence of the radial breathing phonon mode (RBM) density. Van Hove singularities, usually discussed in the context of the single particle electronic excitation spectrum, are found in the RBM density of states with distinct qualitative differences for zig zag, armchair and chiral SWNTs. The influence the phonon mode density has on the two phonon resonant Raman scattering cross-section is discussed.Comment: 6 pages, 2 figures, submitted to Phys. Rev.
    corecore