11,919 research outputs found

    Longitudinal distribution of cosmic rays in the heliosphere

    Get PDF
    The longitudinal distribution of cosmic ray intensity was examined during the years 1974-1976 when the persistent high speed solar wind stream structures produced a well ordered inner heliosphere. Solar wind velocity is mapped back to the Sun and compared with cosmic ray intensity which is represented relative to the solar rotation average. Low solar wind velocity is observed to be a necessary, but not sufficient, condition for the occurrence of higher cosmic ray intensities at 1 AU. These relative enhancements cover a restricted range of heliographic longitudes and persist for several solar rotations. The observed solar wind and cosmic ray intensity relationships are consistent with a simple model suggested here in which cosmic ray modulation is very weak in the inner heliosphere, sunward of the first shock crossing on each field line and more intense in the outer heliosphere

    The search for the cause of the low albedo of the moon

    Get PDF
    Experimentation concerning lunar weathering and its effect on the albedo of the surface cover consisted of: (1) determination of the surface chemical composition of lunar soil and ground-up rock samples by Auger electron spectroscopy, (2) measurement of the optical albedo of these samples, and (3) proton or alpha-particle irradiation of terrestrial rock chips and rock powders and of ground-up lunar rock samples in order to determine the optical and surface chemical effect of simulated solar wind

    The Surface Chemical Composition of Lunar Samples and Its Significance for Optical Properties

    Get PDF
    The surface iron, titanium, calcium, and silicon concentration in numerous lunar soil and rock samples was determined by Auger electron spectroscopy. All soil samples show a large increase in the iron to oxygen ratio compared with samples of pulverized rock or with results of the bulk chemical analysis. A solar wind simulation experiment using 2 keV energy alpha -particles showed that an ion dose corresponding to approximately 30,000 years of solar wind increased the iron concentration on the surface of the pulverized Apollo 14 rock sample 14310 to the concentration measured in the Apollo 14 soil sample 14163, and the albedo of the pulverized rock decreased from 0.36 to 0.07. The low albedo of the lunar soil is related to the iron + titanium concentration on its surface. A solar wind sputter reduction mechanism is discussed as a possible cause for both the surface chemical and optical properties of the soil

    Analytical design and evaluation of an active control system for helicopter vibration reduction and gust response alleviation

    Get PDF
    An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter

    Microsatellite primers for red drum (Sciaenops ocellatus)

    Get PDF
    In this note, we document polymerase-chain-reaction (PCR) primer pairs for 101 nuclear-encoded microsatellites designed and developed from a genomic library for red drum (Sciaenops ocellatus). Details of the genomic library construction, the sequencing of positive clones, primer design, and PCR protocols may be found in Karlsson et al. (2008). The 101 microsatellites (GENBA NK Accession Numbers EU015882-EU015982) were amplified successfully and used to genotype 24 red drum obtained from Galveston Bay, Texas (Table 1). A total of 69 of the microsatellites had an uninterrupted (perfect) dinucleotide motif, and 30 had an imperfect dinucleotide motif; one microsatellite had an imperfect tetranucleotide motif, and one had an imperfect and compound motif (Table 1 ). Sizes of the cloned alleles ranged from 84 to 252 base pairs. A ‘blast’ search of the GENBANK database indicated that all of the primers and the cloned alleles were unique (i.e., not duplicated)

    Change in interplanetary shock acceleration preceding STIP Interval 17

    Get PDF
    The intensity and frequency of shock acceleration events in the interplanetary medium decreased dramatically in early 1985. Low energy ions were observed by IMP 8 at 1 AU and Voyagers 1 and 2 at 22 and 16 AU, respectively. Voyager 1 was at 25 deg heliographic latitude while IMP 8 and Voyager 2 were near the solar equatorial plane. The decrease in low energy shock events led to a drop in the average ion flux by a factor of 20 to 50. It started about day 10 of 1985 in the approximately .5 MeV channel on IMP8 and took approximately 75 days to reach the new, lower, background level. The decrease at the Voyagers started approximately 50 days later. The time delay between the start of the decrease at IMP and at Voyager 2 implies that decrease was convected outward with a velocity of approximately 535 km/sec. The intensity and frequency of interplanetary shock events remained at the lower level for at least 1.5 years

    Relativistic Poynting Jets from Accretion Disks

    Full text link
    A model is developed for relativistic Poynting jets from the inner region of a disk around a rotating black hole. The disk is initially threaded by a dipole-like magnetic field. The model is derived from the special relativistic equation for a force-free electromagnetic field. The ``head'' of the Poynting jet is found to propagate outward with a velocity which may be relativistic. The Lorentz factor of the head (Gamma) is found to be dependent on the magnetic field strength close to the black hole, B_0, the density of the external medium n_ext, and on the ratio R=r_0/r_g >1, where r_g is the gravitational radius of the black hole, and r_0 is the radius of the O-point of the initial dipole field threading the disk. For conditions pertinent to an active galactic nuclei, Gamma is approximately equal to 8 (10/R)^(1/3) (B_0/10^3 Gauss)^(1/3) (1/cm^3/n_ext)^(1/6). This model offers an explanation for the observed Lorentz factors which are of the order of 10 for the parsec-scale radio jets measured with very long baseline interferometry.Comment: 4 pages, 1 figur

    Latitude dependence of co-rotating shock acceleration

    Get PDF
    Energetic particle observations in the outer heliosphere (approx 12 A. U.) by the LECP instruments on the Voyager 1 and Voyager 2 spacecraft are discussed that show a definite latitude dependence of the number and intensity of particle enhancements produced by corotating interplanetary regions during an interval when no solar energetic particle events were observed. The particle enhancements are fewer in number and less intense at higher (approx 20 deg.) heliolatitudes. However, the similar spectral shapes of the accelerated particles at the two spacecraft indicate that the acceleration process is the same at the two latitudes, but less intense at the higher latitude

    Seed populations for large solar particle events of cycle 23

    Get PDF
    Using high-resolution mass spectrometers on board the Advanced Composition Explorer (ACE), we surveyed the event-averaged ~0.1-60 MeV/nuc heavy ion elemental composition in 64 large solar energetic particle (LSEP) events of cycle 23. Our results show the following: (1) The rare isotope ^3He is greatly enhanced over the corona or the solar wind values in 46% of the events. (2) The Fe/O ratio decreases with increasing energy up to ~10 MeV/nuc in ~92% of the events and up to ~60 MeV/nuc in ~64% of the events. (3) Heavy ion abundances from C-Fe exhibit systematic M/g-dependent enhancements that are remarkably similar to those seen in ^3He-rich SEP events and CME-driven interplanetary (IP) shock events. Taken together, these results confirm the role of shocks in energizing particles up to ~60 MeV/nuc in the majority of large SEP events of cycle 23, but also show that the seed population is not dominated by ions originating from the ambient corona or the thermal solar wind, as previously believed. Rather, it appears that the source material for CME-associated large SEP events originates predominantly from a suprathermal population with a heavy ion enrichment pattern that is organized according to the ion's mass-per-charge ratio. These new results indicate that current LSEP models must include the routine production of this dynamic suprathermal seed population as a critical pre-cursor to the CME shock acceleration process

    Very high two-dimensional hole gas mobilities in strained silicon germanium

    Get PDF
    We report on the growth by solid source MBE and characterization of remote doped Si/SiGe/Si two-dimensional hole gas structures. It has been found that by reducing the Ge composition to <=13% and limiting the thickness of the alloy layer, growth temperatures can be increased up to 950 °C for these structures while maintaining good structural integrity and planar interfaces. Record mobilities of 19 820 cm2 V−1 s−1 at 7 K were obtained in normal structures. Our calculations suggest that alloy scattering is not important in these structures and that interface roughness and interface charge scattering limit the low temperature mobilities
    • …
    corecore