192 research outputs found
The NASA High-Resolution Speckle Interferometric Imaging Program: Validation and Characterization of Exoplanets and Their Stellar Hosts
Starting in 2008, NASA has provided the exoplanet community an observational program aimed at obtaining the highest resolution imaging available as part of its mission to validate and characterize exoplanets, as well as their stellar environments, in search of life in the Universe. Our current program uses speckle interferometry in the optical (320–1,000 nm) with new instruments on the 3.5-m WIYN and both 8-m Gemini telescopes. Starting with Kepler and K2 follow-up, we now support TESS and other space- and ground-based exoplanet related discovery and characterization projects. The importance of high-resolution imaging for exoplanet research comes via identification of nearby stellar companions that can dilute the transit signal and confound derived exoplanet and stellar parameters. Our observations therefore provide crucial information allowing accurate planet and stellar properties to be determined. Our community program obtains high-resolution imagery, reduces the data, and provides all final data products, without any exclusive use period, to the community via the Exoplanet Follow-Up Observation Program (ExoFOP) website maintained by the NASA Exoplanet Science Institute. This paper describes the need for high-resolution imaging and gives details of the speckle imaging program, highlighting some of the major scientific discoveries made along the way
Revisiting the warm sub-Saturn TOI-1710b
The Transiting Exoplanet Survey Satellite (TESS) provides a continuous suite
of new planet candidates that need confirmation and precise mass determination
from ground-based observatories. This is the case for the G-type star TOI-1710,
which is known to host a transiting sub-Saturn planet
(28.34.7) in a long-period orbit
(P=24.28\,d). Here we combine archival SOPHIE and new and archival HARPS-N
radial velocity data with newly available TESS data to refine the planetary
parameters of the system and derive a new mass measurement for the transiting
planet, taking into account the impact of the stellar activity on the mass
measurement. We report for TOI-1710b a radius of
5.150.12, a mass of
18.44.5, and a mean bulk density of
0.730.18, which are consistent at
1.2, 1.5, and 0.7, respectively, with previous
measurements. Although there is not a significant difference in the final mass
measurement, we needed to add a Gaussian process component to successfully fit
the radial velocity dataset. This work illustrates that adding more
measurements does not necessarily imply a better mass determination in terms of
precision, even though they contribute to increasing our full understanding of
the system. Furthermore, TOI-1710b joins an intriguing class of planets with
radii in the range 4-8 that have no counterparts in the
Solar System. A large gaseous envelope and a bright host star make TOI-1710b a
very suitable candidate for follow-up atmospheric characterization.Comment: Accepted for publication in A&A. 21 pages, 14 figure
TESS Discovery Of Twin Planets Near 2:1 Resonance Around Early M Dwarf TOI 4342
With data from the Transiting Exoplanet Survey Satellite (TESS), we showcase improvements to the MIT Quick Look Pipeline (QLP) through the discovery and validation of a multiplanet system around M dwarf TOI 4342 (Tmag = 11.032, M⋆ = 0.63 M⊙, R⋆ = 0.60 R⊙, Teff = 3900 K, d = 61.54 pc). With updates to QLP, including a new multiplanet search, as well as faster cadence data from TESS\u27s First Extended Mission, we discovered two sub-Neptunes (Rb = 2.266 (+0.038)/(-0.038) R⊕ and Rc = 2.415 (+0.043)/(-0.040) R⊕; Pb = 5.538 days and Pc = 10.689 days) and validated them with ground-based photometry, spectra, and speckle imaging. Both planets notably have high transmission spectroscopy metrics of 36 and 32, making TOI 4342 one of the best systems for comparative atmospheric studies. This system demonstrates how improvements to QLP, along with faster cadence full-frame images, can lead to the discovery of new multiplanet systems
TOI-2076 And TOI-1807: Two Young, Comoving Planetary Systems Within 50 pc Identified By TESS That Are Ideal Candidates For Further Follow Up
We report the discovery of two planetary systems around comoving stars: TOI-2076 (TIC 27491137) and TOI-1807 (TIC 180695581). TOI-2076 is a nearby (41.9 pc) multiplanetary system orbiting a young (204 ± 50 Myr), bright (K = 7.115 in TIC v8.1) start. TOI-1807 hosts a single transiting planet and is similarly nearby (42.58 pc), similarly young (180 ± 40 Myr ), and bright. Both targets exhibit significant, periodic variability due to starspots, characteristic of their young ages. Using photometric data collected by TESS we identify three transiting planets around TOI-2076 with radii of Rb = 3.3 ± 0.04 R⊕, Rc = 4.4 ± 0.05 R⊕, and Rd = 4.1 ± 0.07 R⊕. Planet TOI-2076b has a period of Pb = 10.356 days. For both TOI-2076c and d, TESS observed only two transits, separated by a 2 yr interval in which no data were collected, preventing a unique period determination. A range of long periods (days) are consistent with the data. We identify a short-period planet around TOI-1807 with a radius of Rb = 1.8 ± 0.04 R⊕ and a period of Pb = 0.549 days. Their close proximity, and bright, cool host stars, and young ages make these planets excellent candidates for follow up. TOI-1807b is one of the best-known small (R \u3c 2 R⊕) planets for characterization via eclipse spectroscopy and phase curves with JWST. TOI-1807b is the youngest ultra-short-period planet discovered to date, providing valuable constraints on formation timescales of short-period planets. Given the rarity of young planets, particularly in multiple-planet systems, these planets present an unprecedented opportunity to study and compare exoplanet formation, and young planet atmospheres, at a crucial transition age for formation theory
TOI-1842b: A Transiting Warm Saturn Undergoing Reinflation Around An Evolving Subgiant
The imminent launch of space telescopes designed to probe the atmospheres of exoplanets has prompted new efforts to prioritize the thousands of transiting planet candidates for follow-up characterization. We report the detection and confirmation of TOI-1842b, a warm Saturn identified by TESS and confirmed with ground-based observations from Minerva-Australis, NRES, and the Las Cumbres Observatory Global Telescope. This planet has a radius of 1.04 (+0.06)/(-0.05) RJ, a mass of 0.214 (+0.040)/(-0.038) MJ, an orbital period of 9.5739 (+0.0002)/(-0.0001) days, and an extremely low density (ρ = 0.252 ± 0.091 g cm⁻³). TOI-1842b has among the best known combinations of large atmospheric scale height (893 km) and host-star brightness (J = 8.747 mag), making it an attractive target for atmospheric characterization. As the host star is beginning to evolve off the main sequence, TOI-1842b presents an excellent opportunity to test models of gas giant reinflation. The primary transit duration of only 4.3 hr also makes TOI-1842b an easily-schedulable target for further ground-based atmospheric characterization
TOI-733 b: A planet in the small-planet radius valley orbiting a Sun-like star
We report the discovery of a hot (Teq ≈ 1055 K) planet in the small-planet radius valley that transits the Sun-like star TOI-733. It was discovered as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of {equation presented} days and a radius of {equation presented}. Multi-dimensional Gaussian process modelling of the radial velocity measurements from HARPS and activity indicators gives a semi-amplitude of K = 2.23 ± 0.26 m s-1, translating into a planet mass of {equation presented}. These parameters imply that the planet is of moderate density ({equation presented}) and place it in the transition region between rocky and volatile-rich planets with H/He-dominated envelopes on the mass-radius diagram. Combining these with stellar parameters and abundances, we calculated planet interior and atmosphere models, which in turn suggest that TOI-733 b has a volatile-enriched, most likely secondary outer envelope, and may represent a highly irradiated ocean world. This is one of only a few such planets around G-type stars that are well characterised
A super-massive Neptune-sized planet
Neptune-sized planets exhibit a wide range of compositions and densities,
depending onf cators related to their formation and evolution history, such as
the distance from their host stars and atmospheric escape processes. They can
vary from relatively low-density planets with thick hydrogen-helium atmospheres
to higher-density planets with a substantial amount of water or a rocky
interior with a thinner atmosphere, such as HD 95338 b, TOI-849 b and TOI-2196
b. The discovery of exoplanets in the hot-Neptune desert, a region close to the
host stars with a deficit of Neptune-sized planets, provides insights into the
formation and evolution of planetary systems, including the existence of this
region itself. Here we show observations of the transiting planet TOI-1853 b,
which has a radius of 3.46 +- 0.08 Earth radii and orbits a dwarf star every
1.24 days. This planet has a mass of 73.2 +- 2.7 Earth masses, almost twice
that of any other Neptune-sized planet known so far, and a density of 9.7 +-
0.8 grams per cubic centimetre. These values place TOI-1853 b in the middle of
the Neptunian desert and imply that heavy elements dominate its mass. The
properties of TOI-1853 b present a puzzle for conventional theories of
planetary formation and evolution, and could be the result of several
proto-planet collisions or the final state of an initially high-eccentricity
planet that migrated closer to its parent star.Comment: Preprint submitted to Nature. Please refer to the published version
for the final parameters estimation
TESS Hunt For Young And Maturing Exoplanets (THYME). VI. An 11 Myr Giant Planet Transiting A Very-Low-Mass Star In Lower Centaurus Crux
Mature super-Earths and sub-Neptunes are predicted to be ≃ Jovian radius when younger than 10 Myr. Thus, we expect to find 5–15 R⊕ planets around young stars even if their older counterparts harbor none. We report the discovery and validation of TOI 1227b, a 0.85 ± 0.05 RJ (9.5 R⊕) planet transiting a very-low-mass star (0.170 ± 0.015 M⊙) every 27.4 days. TOI 1227\u27s kinematics and strong lithium absorption confirm that it is a member of a previously discovered subgroup in the Lower Centaurus Crux OB association, which we designate the Musca group. We derive an age of 11 ± 2 Myr for Musca, based on lithium, rotation, and the color–magnitude diagram of Musca members. The TESS data and ground-based follow-up show a deep (2.5%) transit. We use multiwavelength transit observations and radial velocities from the IGRINS spectrograph to validate the signal as planetary in nature, and we obtain an upper limit on the planet mass of ≃0.5 MJ. Because such large planets are exceptionally rare around mature low-mass stars, we suggest that TOI 1227b is still contracting and will eventually turn into one of the more common R⊕ planets
- …