1,751 research outputs found

    The active site structure and catalytic mechanism of arsenite oxidase

    Get PDF
    Arsenite oxidase is thought to be an ancient enzyme, originating before the divergence of the Archaea and the Bacteria. We have investigated the nature of the molybdenum active site of the arsenite oxidase from the Alphaproteobacterium Rhizobium sp. str. NT-26 using a combination of X-ray absorption spectroscopy and computational chemistry. Our analysis indicates an oxidized Mo(VI) active site with a structure that is far from equilibrium. We propose that this is an entatic state imposed by the protein on the active site through relative orientation of the two molybdopterin cofactors, in a variant of the Rây-Dutt twist of classical coordination chemistry, which we call the pterin twist hypothesis. We discuss the implications of this hypothesis for other putatively ancient molybdopterin-based enzymes

    X-ray absorption spectroscopy

    Get PDF
    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented

    Prolonged response of recurrent IDH-wild-type glioblastoma to laser interstitial thermal therapy with pembrolizumab

    Get PDF
    Despite the improved understanding of the molecular and genetic heterogeneity of glioblastoma, there is still an unmet need for better therapeutics, as treatment approaches have remained unchanged in recent years. Research into the role of the immune microenvironment has generated enthusiasm for testing immunotherapy (specifically, immune checkpoint inhibitors). However, to date, trials of immunotherapy in glioblastoma have not demonstrated a survival advantage. Combination approaches aimed at optimally inducing response to immune checkpoint inhibitors with radiotherapy are currently being investigated. Herein, the authors describe their experience of the potential benefit and clinical outcomes of using combination pembrolizumab (an immune checkpoint inhibitor) and laser interstitial thermal therapy in a case series of patients with recurren

    CD8+ T Cells Mediate the Athero-Protective Effect of Immunization with an ApoB-100 Peptide

    Get PDF
    Immunization of hypercholesterolemic mice with selected apoB-100 peptide antigens reduces atherosclerosis but the precise immune mediators of athero-protection remain unclear. In this study we show that immunization of apoE (-/-) mice with p210, a 20 amino acid apoB-100 related peptide, reduced aortic atherosclerosis compared with PBS or adjuvant/carrier controls. Immunization with p210 activated CD8+ T cells, reduced dendritic cells (DC) at the site of immunization and within the plaque with an associated reduction in plaque macrophage immunoreactivity. Adoptive transfer of CD8+ T cells from p210 immunized mice recapitulated the athero-protective effect of p210 immunization in naïve, non-immunized mice. CD8+ T cells from p210 immunized mice developed a preferentially higher cytolytic response against p210-loaded dendritic cells in vitro. Although p210 immunization profoundly modulated DCs and cellular immune responses, it did not alter the efficacy of subsequent T cell dependent or independent immune response to other irrelevant antigens. Our data define, for the first time, a role for CD8+ T cells in mediating the athero-protective effects of apoB-100 related peptide immunization in apoE (-/-) mice

    Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.

    Get PDF
    Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity

    Survival after chemotherapy and/or radiotherapy versus self-expanding metal stent insertion in the setting of inoperable esophageal cancer: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our aim was to compare survival of the various treatment modality groups of chemotherapy and/or radiotherapy in relation to SEMS (self-expanding metal stents) in a retrospective case-control study. We have made the hypothesis that the administration of combined chemoradiotherapy improves survival in inoperable esophageal cancer patients.</p> <p>Methods</p> <p>All patients were confirmed histologically as having surgically non- resectable esophageal carcinoma. Included were patients with squamous cell carcinoma, undifferentiated carcinoma as well as Siewert type I--but not type II - esophagogastric junctional adenocarcinoma. The decision to proceed with palliative treatments was taken within the context of a multidisciplinary team meeting and full expert review based on patient's wish, co-morbid disease, clinical metastases, distant metastases, M1 nodal metastases, T4-tumor airway, aorta, main stem bronchi, cardiac invasion, and peritoneal disease. Patients not fit enough to tolerate a radical course of definitive chemo- and/or radiation therapy were referred for self-expanding metal stent insertion. Our approach to deal with potential confounders was to match subjects according to their clinical characteristics (contraindications for surgery) and tumor stage according to diagnostic work-up in four groups: SEMS group (A), Chemotherapy group (B), Radiotherapy group (C), and Chemoradiotherapy group (D).</p> <p>Results</p> <p>Esophagectomy was contraindicated in 155 (35.5%) out of 437 patients presenting with esophageal cancer to the Department of General and Abdominal Surgery of the University Hospital of Mainz, Germany, between November 1997 and November 2007. There were 133 males and 22 females with a median age of 64.3 (43-88) years. Out of 155 patients, 123 were assigned to four groups: SEMS group (A) n = 26, Chemotherapy group (B) n = 12, Radiotherapy group (C) n = 23 and Chemoradiotherapy group (D) n = 62. Mean patient survival for the 4 groups was as follows: Group A: 6.92 ± 8.4 months; Group B: 7.75 ± 6.6 months; Group C: 8.56 ± 9.5 months, and Group D: 13.53 ± 14.7 months. Significant differences in overall survival were associated with tumor histology (<it>P </it>= 0.027), tumor localization (<it>P </it>= 0.019), and type of therapy (<it>P </it>= 0.005), respectively, in univariate analysis. Treatment modality (<it>P </it>= 0.043) was the only independent predictor of survival in multivariate analysis. The difference in overall survival between Group A and Group D was highly significant (<it>P </it>< 0.01) and in favor of Group D. As concerns Group D versus Group B and Group D versus Group C there was a trend towards a difference in overall survival in favor of Group D (<it>P </it>= 0.069 and <it>P </it>= 0.059, respectively).</p> <p>Conclusions</p> <p>The prognosis of inoperable esophageal cancer seems to be highly dependent on the suitability of the induction of patient-specific therapeutic measures and is significantly better, when chemoradiotherapy is applied.</p

    WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics

    Get PDF
    Prostate cancer cells with stem cell characteristics were identified in human prostate cancer cell lines by their ability to form from single cells self-renewing prostaspheres in non-adherent cultures. Prostaspheres exhibited heterogeneous expression of proliferation, differentiation and stem cell-associated makers CD44, ABCG2 and CD133. Treatment with WNT inhibitors reduced both prostasphere size and self-renewal. In contrast, addition of Wnt3a caused increased prostasphere size and self-renewal, which was associated with a significant increase in nuclear Î’-catenin, keratin 18, CD133 and CD44 expression. As a high proportion of LNCaP and C4-2B cancer cells express androgen receptor we determined the effect of the androgen receptor antagonist bicalutamide. Androgen receptor inhibition reduced prostasphere size and expression of PSA, but did not inhibit prostasphere formation. These effects are consistent with the androgen-independent self-renewal of cells with stem cell characteristics and the androgen-dependent proliferation of transit amplifying cells. As the canonical WNT signaling effector Î’-catenin can also associate with the androgen receptor, we propose a model for tumour propagation involving a balance between WNT and androgen receptor activity. That would affect the self-renewal of a cancer cell with stem cell characteristics and drive transit amplifying cell proliferation and differentiation. In conclusion, we provide evidence that WNT activity regulates the self-renewal of prostate cancer cells with stem cell characteristics independently of androgen receptor activity. Inhibition of WNT signaling therefore has the potential to reduce the self-renewal of prostate cancer cells with stem cell characteristics and improve the therapeutic outcome.Peer reviewe
    • …
    corecore