34 research outputs found

    Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression

    Get PDF
    Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in tumour progression and metastasis. In this study, we investigated the in vitro and in vivo expression patterns of MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1 and TIMP-2 mRNA and protein in a previously described human melanoma xenograft model. This model consists of eight human melanoma cell lines with different metastatic behaviour after subcutaneous (s.c.) injection into nude mice. MMP-1 mRNA was detectable in all cell lines by reverse transcription polymerase chain reaction (RT-PCR), but the expression was too low to be detected by Northern blot analysis. No MMP-1 protein could be found using Western blotting. MMP-2 mRNA and protein were present in all cell lines, with the highest expression of both latent and active MMP-2 in the highest metastatic cell lines MV3 and BLM. MMP-3 mRNA was expressed in MV3 and BLM, and in the non-metastatic cell line 530, whereas MMP-3 protein was detectable only in MV3 and BLM. None of the melanoma cell lines expressed MMP-9. TIMP-1 and TIMP-2 mRNA and protein, finally, were present in all cell lines. A correlation between TIMP expression level and metastatic capacity of cell lines, however, was lacking. MMP and TIMP mRNA and protein expression levels were also studied in s.c. xenograft lesions derived from a selection of these cell lines. RT-PCR analysis revealed that MMP-1 mRNA was present in MV3 and BLM xenografts, and to a lesser extent in 530. Positive staining for MMP-1 protein was found in xenograft lesions derived from both low and high metastatic cell lines, indicating an in vivo up-regulation of MMP-1. MMP-2 mRNA was detectable only in xenografts derived from the highly metastatic cell lines 1F6m, MV3 and BLM. In agreement with the in vitro results, the highest levels of both latent and activated MMP-2 protein were observed in MV3 and BLM xenografts. With the exception of MMP-9 mRNA expression in 530 xenografts, MMP-3, MMP-9, and TIMP-1 mRNA and protein were not detectable in any xenograft, indicating a down-regulated expression of MMP-3 and TIMP-1 in vivo. TIMP-2 mRNA and protein were present in all xenografts; interestingly, the strongest immunoreactivity of tumour cells was found at the border of necrotic areas. Our study demonstrates that of all tested components of the matrix metalloproteinase system, only expression of activated MMP-2 correlates with increased malignancy in our melanoma xenograft model, corroborating an important role of MMP-2 in human melanoma invasion and metastasis. © 1999 Cancer Research Campaig

    CD13/Aminopeptidase N overexpression by basic fibroblast growth factor mediates enhanced invasiveness of 1F6 human melanoma cells

    Get PDF
    CD13/Aminopeptidase N (CD13) is known to play an important role in tumour cell invasion. We examined whether basic fibroblast growth factor (bFGF) is involved in the regulation of CD13 expression in human melanoma cells. 1F6 human melanoma cells were stably transfected with constructs encoding either the 18 kDa (18kD) or all (ALL) bFGF isoform proteins. We observed highly increased CD13 mRNA and protein expression in the 1F6 clones regardless of the overexpression of either the 18kD or all isoform proteins. Neutral aminopeptidase activity was increased five-fold and could be inhibited by bestatin and the CD13-neutralising antibody WM15. The enhanced invasion through Matrigel, but not migration in a wound assay, was efficiently abrogated by both bestatin and WM15. Upregulation of CD13 expression was the result of increased epithelial and myeloid promoter activity up to 4.5-fold in 1F6-18kD and 1F6-ALL clones. Interestingly, in a panel of human melanoma cell lines, a significant correlation (r2=0.883, P<0.05) between bFGF and CD13 mRNA and protein expression was detected. High bFGF and CD13 expression were clearly related with an aggressive phenotype. Taken together, our data indicate that high bFGF expression upregulates CD13 expression in human melanoma cells by activating both the myeloid and the epithelial CD13 promoter. In addition, we show that high bFGF and CD13 expression results in enhanced invasive capacity and metastatic behaviour of human melanoma cells

    High-Level Expression of Wild-Type p53 in Melanoma Cells is Frequently Associated with Inactivity in p53 Reporter Gene Assays

    Get PDF
    Background: Inactivation of the p53 pathway that controls cell cycle progression, apoptosis and senescence, has been proposed to occur in virtually all human tumors and p53 is the protein most frequently mutated in human cancer. However, the mutational status of p53 in melanoma is still controversial; to clarify this notion we analysed the largest series of melanoma samples reported to date. Methodology/Principal Findings: Immunohistochemical analysis of more than 180 melanoma specimens demonstrated that high levels of p53 are expressed in the vast majority of cases. Subsequent sequencing of the p53 exons 5–8, however, revealed only in one case the presence of a mutation. Nevertheless, by means of two different p53 reporter constructs we demonstrate transcriptional inactivity of wild type p53 in 6 out of 10 melanoma cell lines; the 4 other p53 wild type melanoma cell lines exhibit p53 reporter gene activity, which can be blocked by shRNA knock down of p53. Conclusions/Significance: In melanomas expressing high levels of wild type p53 this tumor suppressor is frequently inactivated at transcriptional level

    Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity

    Get PDF
    The present study examined the ability of human monocytes to produce reactive oxygen intermediates after a contact with tumour cells. Monocytes generated oxygen radicals, as measured by luminol-enhanced chemiluminescence and superoxide anion production, after stimulation with the tumour, but not with untransformed, cells. The use of specific oxygen radical scavengers and inhibitors, superoxide dismutase, catalase, dimethyl sulphoxide and deferoxamine as well as the myeloperoxidase inhibitor 4-aminobenzoic acid hydrazide, indicated that chemiluminescence was dependent on the production of superoxide anion and hydroxyl radical and the presence of myeloperoxidase. The tumour cell-induced chemiluminescent response of monocytes showed different kinetics from that seen after activation of monocytes with phorbol ester. These results indicate that human monocytes can be directly stimulated by tumour cells for reactive oxygen intermediate production. Spontaneous monocyte-mediated cytotoxicity towards cancer cells was inhibited by superoxide dismutase, catalase, deferoxamine and hydrazide, implicating the role of superoxide anion, hydrogen peroxide, hydroxyl radical and hypohalite. We wish to suggest that so-called ‘spontaneous’ tumoricidal capacity of freshly isolated human monocytes may in fact be an inducible event associated with generation of reactive oxygen intermediates and perhaps other toxic mediators, resulting from a contact of monocytes with tumour cells. © 1999 Cancer Research Campaig

    Expression of SCF splice variants in human melanocytes and melanoma cell lines: potential prognostic implications

    Get PDF
    Stem cell factor (SCF), the ligand for c-Kit, is known to regulate developmental and functional processes of haematopoietic stem cells, mast cells and melanocytes. Two different splice variants form predominantly soluble (sSCF or SCF-1) and in addition some membrane-bound SCF (mSCF or SCF-2). In order to explore the prognostic significance of these molecules in melanoma, total SCF, SCF splice variants and c-Kit expression were studied in normal skin melanocytes and in 11 different melanoma cell lines, using reverse transcription polymerase chain reaction, immunocytochemistry and enzyme-linked immunosorbent assay. Nine of the 11 melanoma cell lines expressed SCF-1 mRNA, only two of them SCF-2, and these two also SCF-1. Coexpression of both SCF-1 and c-Kit was noted in five cell lines, and only one cell line as well as normal melanocytes expressed both SCF-1 and SCF-2 as well as c-Kit. Corresponding results were obtained on immunocytochemical staining. Of three exemplary melanoma cell lines studied, two expressing SCF mRNA also released SCF spontaneously and on stimulation, whereas the line lacking SCF and c-kit mRNA (SK-Mel-23) failed to do so. These data demonstrate thus that melanoma cell lines, particularly those known to metastasize in vivo, lose the ability to express SCF-2 mRNA, suggesting that this molecule may serve, next to c-Kit, as a prognostic marker for malignant melanoma. © 2000 Cancer Research Campaig

    The human keratins: biology and pathology

    Get PDF
    The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family
    corecore