5 research outputs found

    Natural disasters in the history of the eastern Turk empire

    Full text link
    This article analyzes the effect of climate extremes on the historical processes that took place (AD 536, 581, 601, 626 and 679) in the Eastern Turk Empire (AD 534–745) in Inner Asia. Climate extremes are sharp, strong and sometimes protracted periods of cooling and drought caused by volcanic eruptions that in this case resulted in a negative effect on the economy of a nomadic society and were often accompanied by famine and illness. In fact, many of these natural catastrophes coincided with the Black Death pandemics among the Eastern Turks and the Chinese living in the north of China. The Turk Empire can be split into several chronological periods during which significant events that led to changes in the course of history of the nomadic state took place: AD 534–545—the rise of the Turk Empire; AD 581–583—the division of the Turk Empire into theWestern and the Eastern Empires; AD 601–603—the rise of Qimin Qaghan; AD 627–630—the Eastern Turks are conquered by China; AD 679–687—the second rise of the Eastern Turk Empire. The research shows that there is clearly-discernable interplay between important historical events and climate extremes in the history of the Turk Empire. This interplay has led us to the conclusion that the climatic factor did have an impact on the historical processes that took place in the eastern part of Inner Asia, especially on the territories with a nomadic economy. © The Author(s) 2019

    A geographical information system managing geotechnical data for Athens (Greece) and its use for automated seismic microzonation

    No full text
    This article presents a geographical information system (GIS) which manages geotechnical data obtained from detailed geotechnical surveys as well as from in situ observations in Athens, Greece. Thoroughly examined data from more than 2,000 exploratory boreholes and trial pits located in the wider area of Athens have been incorporated using a relational database system. From the analysis of these results, thematic maps are compiled to illustrate the distribution of engineering geological information (e.g. the depth of the "Athens schist" head). In addition, a methodology for an automated GIS-aided seismic microzonation study is outlined and is being employed taking into account the aforementioned geotechnical and engineering geological information, as well as existing seismological data to estimate the variability of seismic ground motion for the southern part of Athens
    corecore