30 research outputs found

    Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites

    Get PDF
    Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter ΞΌ, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, ΞΌ was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery

    The pathophysiology of malarial anaemia: where have all the red cells gone?

    Get PDF
    Malarial anaemia is an enormous public health problem in endemic areas and occurs predominantly in children in the first 3 years of life. Anaemia is due to both a great increase in clearance of uninfected cells and a failure of an adequate bone marrow response. Odhiambo, Stoute and colleagues show how the age distribution of malarial anaemia and the haemolysis of red blood cells may be linked by an age-dependent increase in the capacity of red blood cells to inactivate complement components absorbed or deposited directly on to the surface of the red blood cell. In this commentary, we discuss what has been established about the role of complement deposition on the surface of red blood cells in the pathology of malarial anaemia, how genetic polymorphisms of the complement control proteins influence the outcome of malaria infection and how the findings of Odhiambo, Stoute and colleagues and others shed light on the puzzling age distribution of different syndromes of severe malaria

    Early and extensive CD55 loss from red blood cells supports a causal role in malarial anaemia

    Get PDF
    BACKGROUND\ud \ud Levels of complement regulatory proteins (CrP) on the surface of red blood cells (RBC) decrease during severe malarial anaemia and as part of cell ageing process. It remains unclear whether CrP changes seen during malaria contribute to the development of anaemia, or result from an altered RBC age distribution due to suppressive effects of malaria on erythropoiesis.\ud \ud METHODS\ud \ud A cross sectional study was conducted in the north-east coast of Tanzania to investigate whether the changes in glycosylphosphatidylinositol (GPI)-anchored complement regulatory proteins (CD55 and CD59) contributes to malaria anaemia. Blood samples were collected from a cohort of children under intensive surveillance for Plasmodium falciparum parasitaemia and illness. Levels of CD55 and CD59 were measured by flow cytometer and compared between anaemic (8.08 g/dl) and non- anaemic children (11.42 g/dl).\ud \ud RESULTS\ud \ud Levels of CD55 and CD59 decreased with increased RBC age. CD55 levels were lower in anaemic children and the difference was seen in RBC of all ages. Levels of CD59 were lower in anaemic children, but these differences were not significant. CD55, but not CD59, levels correlated positively with the level of haemoglobin in anaemic children.\ud \ud CONCLUSION\ud \ud The extent of CD55 loss from RBC of all ages early in the course of malarial anaemia and the correlation of CD55 with haemoglobin levels support the hypothesis that CD55 may play a causal role in this disorder

    Deletion of a Malaria Invasion Gene Reduces Death and Anemia, in Model Hosts

    Get PDF
    Malaria parasites induce complex cellular and clinical phenotypes, including anemia, cerebral malaria and death in a wide range of mammalian hosts. Host genes and parasite β€˜toxins’ have been implicated in malarial disease, but the contribution of parasite genes remains to be fully defined. Here we assess disease in BALB/c mice and Wistar rats infected by the rodent malaria parasite Plasmodium berghei with a gene knock out for merozoite surface protein (MSP) 7. MSP7 is not essential for infection but in P. falciparum, it enhances erythrocyte invasion by 20%. In vivo, as compared to wild type, the P. berghei Ξ”msp7 mutant is associated with an abrogation of death and a decrease from 3% to 2% in peak, circulating parasitemia. The Ξ”msp7 mutant is also associated with less anemia and modest increase in the size of follicles in the spleen. Together these data show that deletion of a single parasite invasion ligand modulates blood stage disease, as measured by death and anemia. This work is the first to assess the contribution of a gene present in all plasmodial species in severe disease

    Quantitative Analysis of Immune Response and Erythropoiesis during Rodent Malarial Infection

    Get PDF
    Malarial infection is associated with complex immune and erythropoietic responses in the host. A quantitative understanding of these processes is essential to help inform malaria therapy and for the design of effective vaccines. In this study, we use a statistical model-fitting approach to investigate the immune and erythropoietic responses in Plasmodium chabaudi infections of mice. Three mouse phenotypes (wildtype, T-cell-deficient nude mice, and nude mice reconstituted with T-cells taken from wildtype mice) were infected with one of two parasite clones (AS or AJ). Under a Bayesian framework, we use an adaptive population-based Markov chain Monte Carlo method and fit a set of dynamical models to observed data on parasite and red blood cell (RBC) densities. Model fits are compared using Bayes' factors and parameter estimates obtained. We consider three independent immune mechanisms: clearance of parasitised RBCs (pRBC), clearance of unparasitised RBCs (uRBC), and clearance of parasites that burst from RBCs (merozoites). Our results suggest that the immune response of wildtype mice is associated with less destruction of uRBCs, compared to the immune response of nude mice. There is a greater degree of synchronisation between pRBC and uRBC clearance than between either mechanism and merozoite clearance. In all three mouse phenotypes, control of the peak of parasite density is associated with pRBC clearance. In wildtype mice and AS-infected nude mice, control of the peak is also associated with uRBC clearance. Our results suggest that uRBC clearance, rather than RBC infection, is the major determinant of RBC dynamics from approximately day 12 post-innoculation. During the first 2–3 weeks of blood-stage infection, immune-mediated clearance of pRBCs and uRBCs appears to have a much stronger effect than immune-mediated merozoite clearance. Upregulation of erythropoiesis is dependent on mouse phenotype and is greater in wildtype and reconstitited mice. Our study highlights the informative power of statistically rigorous model-fitting techniques in elucidating biological systems

    Host Control of Malaria Infections: Constraints on Immune and Erythropoeitic Response Kinetics

    Get PDF
    The two main agents of human malaria, Plasmodium vivax and Plasmodium falciparum, can induce severe anemia and provoke strong, complex immune reactions. Which dynamical behaviors of host immune and erythropoietic responses would foster control of infection, and which would lead to runaway parasitemia and/or severe anemia? To answer these questions, we developed differential equation models of interacting parasite and red blood cell (RBC) populations modulated by host immune and erythropoietic responses. The model immune responses incorporate both a rapidly responding innate component and a slower-responding, long-term antibody component, with several parasite developmental stages considered as targets for each type of immune response. We found that simulated infections with the highest parasitemia tended to be those with ineffective innate immunity even if antibodies were present. We also compared infections with dyserythropoiesis (reduced RBC production during infection) to those with compensatory erythropoiesis (boosted RBC production) or a fixed basal RBC production rate. Dyserythropoiesis tended to reduce parasitemia slightly but at a cost to the host of aggravating anemia. On the other hand, compensatory erythropoiesis tended to reduce the severity of anemia but with enhanced parasitemia if the innate response was ineffective. For both parasite species, sharp transitions between the schizont and the merozoite stages of development (i.e., with standard deviation in intra-RBC development time ≀2.4 h) were associated with lower parasitemia and less severe anemia. Thus tight synchronization in asexual parasite development might help control parasitemia. Finally, our simulations suggest that P. vivax can induce severe anemia as readily as P. falciparum for the same type of immune response, though P. vivax attacks a much smaller subset of RBCs. Since most P. vivax infections are nonlethal (if debilitating) clinically, this suggests that P. falciparum adaptations for countering or evading immune responses are more effective than those of P. vivax
    corecore