52 research outputs found

    Flows of granular material in two-dimensional channels

    Get PDF
    Secondary cone-type crushing machines are an important part of the aggregate production process. These devices process roughly crushed material into aggregate of greater consistency and homogeneity. We apply a continuum model for granular materials (`A Constitutive Law For Dense Granular Flows', Nature 441, p727-730, 2006) to flows of granular material in representative two-dimensional channels, applying a cyclic applied crushing stress in lieu of a moving boundary. Using finite element methods we solve a sequence of quasi-steady fluid problems within the framework of a pressure dependent particle size problem in time. Upon approximating output quantity and particle size we adjust the frequency and strength of the crushing stroke to assess their impact on the output

    Global Experiences on Wastewater Irrigation: Challenges and Prospects

    Get PDF

    A posteriori error estimation for an augmented mixed-primal method applied to sedimentation–consolidation systems

    No full text
    In this paper we develop the a posteriori error analysis of an augmented mixed-primal finite element method for the 2D and 3D versions of a stationary flow and transport coupled system, typically encountered in sedimentation–consolidation processes. The governing equations consist in the Brinkman problem with concentration-dependent viscosity, written in terms of Cauchy pseudo-stresses and bulk velocity of the mixture; coupled with a nonlinear advection – nonlinear diffusion equation describing the transport of the solids volume fraction. We derive two efficient and reliable residual-based a posteriori error estimators for a finite element scheme using Raviart–Thomas spaces of order k for the stress approximation, and continuous piecewise polynomials of degree for both velocity and concentration. For the first estimator we make use of suitable ellipticity and inf–sup conditions together with a Helmholtz decomposition and the local approximation properties of the ClĂ©ment interpolant and Raviart–Thomas operator to show its reliability, whereas the efficiency follows from inverse inequalities and localisation arguments based on triangle-bubble and edge-bubble functions. Next, we analyse an alternative error estimator, whose reliability can be proved without resorting to Helmholtz decompositions. Finally, we provide some numerical results confirming the reliability and efficiency of the estimators and illustrating the good performance of the associated adaptive algorithm for the augmented mixed-primal finite element method

    A posteriori error analysis of a fully-mixed formulation for the Brinkman-Darcy problem

    No full text
    We develop the a posteriori error analysis for a mixed finite element method applied to the coupling of Brinkman and Darcy equations in 3D, modelling the interaction of viscous and non-viscous flow effects across a given interface. The system is formulated in terms of velocity and pressure within the Darcy subdomain, together with vorticity, velocity and pressure of the fluid in the Brinkman region, and a Lagrange multiplier enforcing pressure continuity across the interface. The solvability of a fully-mixed formulation along with a priori error bounds for a finite element method have been recently established in Álvarez et al. ( Comput Methods Appl Mech Eng 307:68–95, 2016). Here we derive a residual-based a posteriori error estimator for such a scheme, and prove its reliability exploiting a global inf-sup condition in combination with suitable Helmholtz decompositions, and interpolation properties of ClĂ©ment and Raviart–Thomas operators. The estimator is also shown to be efficient, following a localisation strategy and appropriate inverse inequalities. We present numerical tests to confirm the features of the estimator and to illustrate the performance of the method in academic and application-oriented problems

    A posteriori error analysis of an augmented mixed method for the Navier–Stokes equations with nonlinear viscosity

    No full text
    In this work we develop the a posteriori error analysis of an augmented mixed finite element method for the 2D and 3D versions of the Navier–Stokes equations when the viscosity depends nonlinearly on the module of the velocity gradient. Two different reliable and efficient residual-based a posteriori error estimators for this problem on arbitrary (convex or non-convex) polygonal and polyhedral regions are derived. Our analysis of reliability of the proposed estimators draws mainly upon the global inf–sup condition satisfied by a suitable linearisation of the continuous formulation, an application of Helmholtz decomposition, and the local approximation properties of the Raviart–Thomas and ClĂ©ment interpolation operators. In addition, differently from previous approaches for augmented mixed formulations, the boundedness of the ClĂ©ment operator plays now an interesting role in the reliability estimate. On the other hand, inverse and discrete inequalities, and the localisation technique based on triangle-bubble and edge-bubble functions are utilised to show their efficiency. Finally, several numerical results are provided to illustrate the good performance of the augmented mixed method, to confirm the aforementioned properties of the a posteriori error estimators, and to show the behaviour of the associated adaptive algorithm

    A mixed-primal finite element approximation of a sedimentation-consolidation system

    No full text
    This paper is devoted to the mathematical and numerical analysis of a strongly coupled flow and transport system typically encountered in continuum-based models of sedimentation-consolidation processes. The model focuses on the steady-state regime of a solid-liquid suspension immersed in a viscous fluid within a permeable medium, and the governing equations consist in the Brinkman problem with variable viscosity, written in terms of Cauchy pseudo-stresses and bulk velocity of the mixture; coupled with a nonlinear advection – nonlinear diffusion equation describing the transport of the solids volume fraction. The variational formulation is based on an augmented mixed approach for the Brinkman problem and the usual primal weak form for the transport equation. Solvability of the coupled formulation is established by combining fixed point arguments, certain regularity assumptions, and some classical results concerning variational problems and Sobolev spaces. In turn, the resulting augmented mixed-primal Galerkin scheme employs Raviart-Thomas approximations of order k for the stress and piecewise continuous polynomials of order k + 1 for velocity and volume fraction, and its solvability is deduced by applying a fixed-point strategy as well. Then, suitable Strang-type inequalities are utilized to rigorously derive optimal error estimates in the natural norms. Finally, a few numerical tests illustrate the accuracy of the augmented mixed-primal finite element method, and the properties of the mode

    A posteriori error analysis of a fully-mixed formulation for the Brinkman-Darcy problem

    No full text
    We develop the a posteriori error analysis for a mixed finite element method applied to the coupling of Brinkman and Darcy equations in 3D, modelling the interaction of viscous and non-viscous flow effects across a given interface. The system is formulated in terms of velocity and pressure within the Darcy subdomain, together with vorticity, velocity and pressure of the fluid in the Brinkman region, and a Lagrange multiplier enforcing pressure continuity across the interface. The solvability of a fully-mixed formulation along with a priori error bounds for a finite element method have been recently established in Álvarez et al. ( Comput Methods Appl Mech Eng 307:68–95, 2016). Here we derive a residual-based a posteriori error estimator for such a scheme, and prove its reliability exploiting a global inf-sup condition in combination with suitable Helmholtz decompositions, and interpolation properties of ClĂ©ment and Raviart–Thomas operators. The estimator is also shown to be efficient, following a localisation strategy and appropriate inverse inequalities. We present numerical tests to confirm the features of the estimator and to illustrate the performance of the method in academic and application-oriented problems
    • 

    corecore