21 research outputs found

    Citizen science: a new approach to advance ecology, education, and conservation

    Get PDF
    Citizen science has a long history in the ecological sciences and has made substantial contributions to science, education, and society. Developments in information technology during the last few decades have created new opportunities for citizen science to engage ever larger audiences of volunteers to help address some of ecology’s most pressing issues, such as global environmental change. Using online tools, volunteers can find projects that match their interests and learn the skills and protocols required to develop questions, collect data, submit data, and help process and analyze data online. Citizen science has become increasingly important for its ability to engage large numbers of volunteers to generate observations at scales or resolutions unattainable by individual researchers. As a coupled natural and human approach, citizen science can also help researchers access local knowledge and implement conservation projects that might be impossible otherwise. In Japan, however, the value of citizen science to science and society is still underappreciated. Here we present case studies of citizen science in Japan, the United States, and the United Kingdom, and describe how citizen science is used to tackle key questions in ecology and conservation, including spatial and macro-ecology, management of threatened and invasive species, and monitoring of biodiversity. We also discuss the importance of data quality, volunteer recruitment, program evaluation, and the integration of science and human systems in citizen science projects. Finally, we outline some of the primary challenges facing citizen science and its future.Dr. Janis L. Dickinson was the keynote speaker at the international symposium at the 61th annual meeting of the Ecological Society of Japan. We appreciate the Ministry of Education, Culture, Sports, Science and Technology in Japan for providing grant to Hiromi Kobori (25282044). Tatsuya Amano is financially supported by the European Commission’s Marie Curie International Incoming Fellowship Programme (PIIF-GA-2011- 303221). The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the funding agencies or the Department of the Interior or the US Government.This is the final version of the article. It was first available from Springer via http://dx.doi.org/10.1007/s11284-015-1314-

    Serotype distribution of Streptococcus pneumoniae causing invasive disease in children in the post-PCV era:A systematic review and meta-analysis

    Get PDF
    BACKGROUND:Routine immunisation with pneumococcal conjugate vaccines (PCV7/10/13) has reduced invasive pneumococcal disease (IPD) due to vaccine serotypes significantly. However, an increase in disease due to non-vaccine types, or serotype replacement, has been observed. Serotypes' individual contributions to IPD play a critical role in determining the overall effects of PCVs. This study examines the distribution of pneumococcal serotypes in children to identify leading serotypes associated with IPD post-PCV introduction. METHODS:A systematic search was performed to identify studies and surveillance reports (published between 2000 and December 2015) of pneumococcal serotypes causing childhood IPD post-PCV introduction. Serotype data were differentiated based on the PCV administered during the study period: PCV7 or higher valent PCVs (PCV10 or PCV13). Meta-analysis was conducted to estimate the proportional contributions of the most frequent serotypes in childhood IPD in each period. RESULTS:We identified 68 studies reporting serotype data among IPD cases in children. We analysed data from 38 studies (14 countries) where PCV7 was administered and 20 (24 countries) where PCV10 or PCV13 have been introduced. Studies reported early and late periods of PCV7 administration (range: 2001∓13). In these settings, serotype 19A was the most predominant cause of childhood IPD, accounting for 21.8% (95%CI 18.6∓25.6) of cases. In countries that have introduced higher valent PCVs, study periods were largely representative of the transition and early years of PCV10 or PCV13. In these studies, the overall serotype-specific contribution of 19A was lower (14.2% 95%CI 11.1∓18.3). Overall, non-PCV13 serotypes contributed to 42.2% (95%CI 36.1∓49.5%) of childhood IPD cases. However, regional differences were noted (57.8% in North America, 71.9% in Europe, 45.9% in Western Pacific, 28.5% in Latin America, 42.7% in one African country, and 9.2% in one Eastern Mediterranean country). Predominant non-PCV13 serotypes overall were 22F, 12F, 33F, 24F, 15C, 15B, 23B, 10A, and 38 (descending order), but their rank order varied by region. CONCLUSION:Childhood IPD is associated with a wide number of serotypes. In the early years after introduction of higher valent PCVs, non-PCV13 types caused a considerable proportion of childhood IPD. Serotype data, particularly from resource-limited countries with high burden of IPD, are needed to assess the importance of serotypes in different settings. The geographic diversity of pneumococcal serotypes highlights the importance of continued surveillance to guide vaccine design and recommendations
    corecore