13 research outputs found

    Inter-relationship of plasma markers of oxidative stress and thyroid hormones in schizophrenics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationship of oxidative stress to thyroid hormones has not been studied in the schizophrenics. The present study determined the status and interrelationship of plasma markers of oxidative stress, nitric oxide and thyroid hormones in thirty (17 males and 13 females) newly diagnosed patients with acute schizophrenia before initiation of chemotherapy. Twenty five (13 males and 12 females) mentally healthy individuals served as controls. Patients and controls with history of hard drugs (including alcohol and cigarette), pre-diagnosis medications (e.g. antiparkinsonian/antipsychotic drugs), chronic infections, liver disease and diabetes mellitus were excluded from the study. Plasma levels of total antioxidant potential (TAP), total plasma peroxides (TPP), nitric oxide (NO), malondialdehyde (MDA), thyroxine (T4), tri-iodothyronine (T3) and thyroid stimulating hormone (TSH) were determined in all participants using spectrophotometric and enzyme linked immunosorbent assay (ELISA) methods respectively. Oxidative stress index (OSI) was calculated as the percent ratio of total plasma peroxides and total antioxidant potential.</p> <p>Findings</p> <p>Significantly higher plasma levels of MDA (p < 0.01), TPP (p < 0.01), OSI (p < 0.01), T3 (p < 0.01) and T4 (p < 0.05) were observed in schizophrenics when compared with the controls. The mean levels of TAP, NO and TSH were significantly lower in schizophrenics (p < 0.01) when compared with the controls. The result shows that T3 values correlate significantly with MDA (p < 0.05) and TPP (p < 0.01) in schizophrenics.</p> <p>Conclusions</p> <p>Higher level of TPP may enhance thyroid hormogenesis in schizophrenics. Adjuvant antioxidant therapy may be a novel approach in the treatment of schizophrenic patients.</p

    Balancing with Vibration: A Prelude for “Drift and Act” Balance Control

    Get PDF
    Stick balancing at the fingertip is a powerful paradigm for the study of the control of human balance. Here we show that the mean stick balancing time is increased by about two-fold when a subject stands on a vibrating platform that produces vertical vibrations at the fingertip (0.001 m, 15–50 Hz). High speed motion capture measurements in three dimensions demonstrate that vibration does not shorten the neural latency for stick balancing or change the distribution of the changes in speed made by the fingertip during stick balancing, but does decrease the amplitude of the fluctuations in the relative positions of the fingertip and the tip of the stick in the horizontal plane, A(x,y). The findings are interpreted in terms of a time-delayed “drift and act” control mechanism in which controlling movements are made only when controlled variables exceed a threshold, i.e. the stick survival time measures the time to cross a threshold. The amplitude of the oscillations produced by this mechanism can be decreased by parametric excitation. It is shown that a plot of the logarithm of the vibration-induced increase in stick balancing skill, a measure of the mean first passage time, versus the standard deviation of the A(x,y) fluctuations, a measure of the distance to the threshold, is linear as expected for the times to cross a threshold in a stochastic dynamical system. These observations suggest that the balanced state represents a complex time–dependent state which is situated in a basin of attraction that is of the same order of size. The fact that vibration amplitude can benefit balance control raises the possibility of minimizing risk of falling through appropriate changes in the design of footwear and roughness of the walking surfaces

    The value of plantation forests for plant, invertebrate and bird diversity and the potential for cross-taxon surrogacy

    Get PDF
    As the area of plantation forest expands worldwide and natural, unmanaged forests decline there is much interest in the potential for planted forests to provide habitat for biodiversity. In regions where little semi-natural woodland remains, the biodiversity supported by forest plantations, typically non-native conifers, may be particularly important. Few studies provide detailed comparisons between the species diversity of native woodlands which are being depleted and non-native plantation forests, which are now expanding, based on data collected from multiple taxa in the same study sites. Here we compare the species diversity and community composition of plants, invertebrates and birds in Sitka spruce- (Picea sitchensis-) dominated and Norway spruce- (Picea abies-) dominated plantations, which have expanded significantly in recent decades in the study area in Ireland, with that of oak- and ash-dominated semi-natural woodlands in the same area. The results show that species richness in spruce plantations can be as high as semi-natural woodlands, but that the two forest types support different assemblages of species. In areas where non-native conifer plantations are the principle forest type, their role in the provision of habitat for biodiversity conservation should not be overlooked. Appropriate management should target the introduction of semi-natural woodland characteristics, and on the extension of existing semi-natural woodlands to maintain and enhance forest species diversity. Our data show that although some relatively easily surveyed groups, such as vascular plants and birds, were congruent with many of the other taxa when looking across all study sites, the similarities in response were not strong enough to warrant use of these taxa as surrogates of the others. In order to capture a wide range of biotic variation, assessments of forest biodiversity should either encompass several taxonomic groups, or rely on the use of indicators of diversity that are not species based
    corecore