807 research outputs found
All functions are (locally) -harmonic (up to a small error) - and applications
The classical and the fractional Laplacians exhibit a number of similarities,
but also some rather striking, and sometimes surprising, structural
differences.
A quite important example of these differences is that any function
(regardless of its shape) can be locally approximated by functions with locally
vanishing fractional Laplacian, as it was recently proved by Serena Dipierro,
Ovidiu Savin and myself.
This informal note is an exposition of this result and of some of its
consequences
The homotopy type of the loops on -connected -manifolds
For we compute the homotopy groups of -connected closed
manifolds of dimension . Away from the finite set of primes dividing
the order of the torsion subgroup in homology, the -local homotopy groups of
are determined by the rank of the free Abelian part of the homology.
Moreover, we show that these -local homotopy groups can be expressed as a
direct sum of -local homotopy groups of spheres. The integral homotopy type
of the loop space is also computed and shown to depend only on the rank of the
free Abelian part and the torsion subgroup.Comment: Trends in Algebraic Topology and Related Topics, Trends Math.,
Birkhauser/Springer, 2018. arXiv admin note: text overlap with
arXiv:1510.0519
Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis
The finding of TDP-43 as a major component of ubiquitinated protein inclusions in amyotrophic lateral sclerosis (ALS) has led to the identification of 30 mutations in the transactive response-DNA binding protein (TARDBP) gene, encoding TDP-43. All but one are in exon 6, which encodes the glycine-rich domain. The aim of this study was to determine the frequency of TARDBP mutations in a large cohort of motor neurone disease patients from Northern England (42 non-superoxide dismutase 1 (SOD1) familial ALS (FALS), nine ALS-frontotemporal dementia, 474 sporadic ALS (SALS), 45 progressive muscular atrophy cases). We identified four mutations, two of which were novel, in two familial (FALS) and two sporadic (SALS) cases, giving a frequency of TARDBP mutations in non-SOD1 FALS of 5% and SALS of 0.4%. Analysis of clinical data identified that patients had typical ALS, with limb or bulbar onset, and showed considerable variation in age of onset and rapidity of disease course. However, all cases had an absence of clinically overt cognitive dysfunction
Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.
Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5Β±9.7%) and Ruminococcaceae (16.2Β±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut
The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation
Peer reviewedPublisher PD
Ethnicity, sleep, mood, and illumination in postmenopausal women
BACKGROUND: This study examined how ethnic differences in sleep and depression were related to environmental illumination and circadian rhythms. METHODS: In an ancillary study to the Women's Health Initiative, 459 postmenopausal women were recorded for one week in their homes, using wrist monitors. Sleep and illumination experience were estimated. Depression was self-rated with a brief adjective check list. Affective diagnoses were made using the SCID interview. Sleep disordered breathing was monitored with home pulse oximetry. RESULTS: Hispanic and African-American women slept less than European-American women, according to both objective recordings and their own sleep logs. Non-European-American women had more blood oxygen desaturations during sleep, which accounted for 26% of sleep duration variance associated with ethnicity. Hispanic women were much more depressed. Hispanic, African-American and Native-American women experienced less daily illumination. Less daily illumination experience was associated with poorer global functioning, longer but more disturbed sleep, and more depression. CONCLUSIONS: Curtailed sleep and poor mood were related to ethnicity. Sleep disordered breathing was a factor in the curtailed sleep of minority women. Less illumination was experienced by non-European-American women, but illumination accounted for little of the contrasts between ethnic groups in sleep and mood. Social factors may be involved
Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes
Copyright: Β© 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
- β¦