1,556 research outputs found

    Double Parton Scattering Singularity in One-Loop Integrals

    Full text link
    We present a detailed study of the double parton scattering (DPS) singularity, which is a specific type of Landau singularity that can occur in certain one-loop graphs in theories with massless particles. A simple formula for the DPS singular part of a four-point diagram with arbitrary internal/external particles is derived in terms of the transverse momentum integral of a product of light cone wavefunctions with tree-level matrix elements. This is used to reproduce and explain some results for DPS singularities in box integrals that have been obtained using traditional loop integration techniques. The formula can be straightforwardly generalised to calculate the DPS singularity in loops with an arbitrary number of external particles. We use the generalised version to explain why the specific MHV and NMHV six-photon amplitudes often studied by the NLO multileg community are not divergent at the DPS singular point, and point out that whilst all NMHV amplitudes are always finite, certain MHV amplitudes do contain a DPS divergence. It is shown that our framework for calculating DPS divergences in loop diagrams is entirely consistent with the `two-parton GPD' framework of Diehl and Schafer for calculating proton-proton DPS cross sections, but is inconsistent with the `double PDF' framework of Snigirev.Comment: 29 pages, 8 figures. Minor corrections and clarifications added. Version accepted for publication in JHE

    NRF2-driven miR-125B1 and miR-29B1 transcriptional regulation controls a novel anti-apoptotic miRNA regulatory network for AML survival

    Get PDF
    Transcription factor NRF2 is an important regulator of oxidative stress. It is involved in cancer progression, and has abnormal constitutive expression in acute myeloid leukaemia (AML). Posttranscriptional regulation by microRNAs (miRNAs) can affect the malignant phenotype of AML cells. In this study, we identified and characterised NRF2-regulated miRNAs in AML. An miRNA array identified miRNA expression level changes in response to NRF2 knockdown in AML cells. Further analysis of miRNAs concomitantly regulated by knockdown of the NRF2 inhibitor KEAP1 revealed the major candidate NRF2-mediated miRNAs in AML. We identified miR-125B to be upregulated and miR-29B to be downregulated by NRF2 in AML. Subsequent bioinformatic analysis identified putative NRF2 binding sites upstream of the miR-125B1 coding region and downstream of the mir-29B1 coding region. Chromatin immunoprecipitation analyses showed that NRF2 binds to these antioxidant response elements (AREs) located in the 5′ untranslated regions of miR-125B and miR-29B. Finally, primary AML samples transfected with anti-miR-125B antagomiR or miR-29B mimic showed increased cell death responsiveness either alone or co-treated with standard AML chemotherapy. In summary, we find that NRF2 regulation of miR-125B and miR-29B acts to promote leukaemic cell survival, and their manipulation enhances AML responsiveness towards cytotoxic chemotherapeutics

    Volume increases in putamen associated with positive symptom reduction in previously drug-naive schizophrenia after 6 weeks antipsychotic treatment

    Get PDF
    Background Brain structure appears to alter after antipsychotic administration, but it is unknown whether these alterations are associated with improvement of psychopathology in patients with schizophrenia. In this study, the authors explore this relationship.Method Altogether, 66 first-episode, drug-naive patients with schizophrenia and 23 well-matched healthy controls underwent brain magnetic resonance imaging scans at baseline. All 23 healthy controls and 42 of the patients were rescanned after 6 weeks follow-up. The patients received regular antipsychotic treatment during the 6-week period and their psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS) at baseline and 6 weeks. The difference in PANSS scores between baseline and 6 weeks was expressed as a ratio of the scores at baseline a- a PANSS reduction ratio. A modified tensor-based morphometry procedure was applied to analyse longitudinal images. Correlations between regional volume changes, PANSS reduction ratio and antipsychotic drug dosages were explored.Results Compared with healthy controls, there was a significant increase in grey-matter volume of the right putamen in patients after 6 weeks treatment. This volume change was positively correlated with a positive PANSS reduction score but not related to drug dosages.Conclusions Putaminal volume increased after 6 weeks antipsychotic treatment in first-episode schizophrenia. The increased volume was closely correlated with improved psychopathology, suggesting the putamen might be a biomarker to predict the treatment response in schizophrenia. © 2011 Cambridge University Press.published_or_final_versio

    The structure of the PapD-PapGII pilin complex reveals an open and flexible P5 pocket

    Get PDF
    P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain's fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD's donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in-zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Development of Derivatives of 3, 3′-Diindolylmethane as Potent Leishmania donovani Bi-Subunit Topoisomerase IB Poisons

    Get PDF
    Background: The development of 3, 39-diindolyl methane (DIM) resistant parasite Leishmania donovani (LdDR50) by adaptation with increasing concentrations of the drug generates random mutations in the large and small subunits of heterodimeric DNA topoisomerase I of Leishmania (LdTOP1LS). Mutation of large subunit of LdTOP1LS at F270L is responsible for resistance to DIM up to 50 mM concentration. Methodology/Principal Findings: In search of compounds that inhibit the growth of the DIM resistant parasite and inhibit the catalytic activity of mutated topoisomerase I (F270L), we have prepared three derivatives of DIM namely DPDIM (2,29diphenyl 3,39-diindolyl methane), DMDIM (2,29-dimethyl 3,39-diindolyl methane) and DMODIM (5,59-dimethoxy 3,39diindolyl methane) from parent compound DIM. All the compounds inhibit the growth of DIM resistant parasites, induce DNA fragmentation and stabilize topo1-DNA cleavable complex with the wild type and mutant enzyme. Conclusion: The results suggest that the three derivatives of DIM can act as promising lead molecules for the generation of new anti-leishmanial agents

    Estrogen receptor degradation: a CUE for endocrine resistance?

    Get PDF
    Despite the undoubted success of adjuvant endocrine therapies that target the estrogen receptor pathway, not all women with estrogen receptor-positive breast cancer respond to these therapies, and many who initially respond will subsequently relapse. Deregulation of various aspects of estrogen receptor signaling has been highlighted as a mechanism of resistance and as a basis for alternative therapeutic approaches. However, a recent publication refocuses attention on the estrogen receptor itself by showing that the ubiquitin-binding CUE domain-containing protein 2 is a regulator of estrogen receptor protein degradation and a marker of endocrine resistance in breast cancer

    Cell cycle perturbations and apoptosis induced by isohomohalichondrin B (IHB), a natural marine compound

    Get PDF
    Isohomohalichondrin B (IHB), a novel marine compound with anti-tumoral activity, extracted from the Lissodendorix sponge, inhibits GTP binding to tubulin, preventing microtubule assembly. Cell cycle perturbations and apoptosis induced by IHB were investigated on selected human cancer cell lines by using flow cytometric and biochemical techniques. Monoparameter flow cytometric analysis showed that 1 h IHB exposure caused a delayed progression through S-phase, a dramatic block in G2M phase of the cell cycle and the appearance of tetraploid cell population in LoVo, LoVo/DX, MOLT-4 and K562 cells. At 24 h after IHB exposure, the majority of cells blocked in G2M were in prophase as assessed by morphological analysis and by the fact that they expressed high levels of cyclin A/cdc2 and cyclin B1/cdc2. At 48 h, all cells were tetraploid as assessed by biparameter cyclin A/DNA and cyclin B1/DNA content analysis. Apoptotic death was detected in both leukaemic MOLT-4 and K562 cells, which express wild-type and mutated p53 respectively, when the cells were blocked in mitotic prophase. In conclusion, IHB is a novel potent anti-tumour drug that causes delayed S-phase progression, mitotic block, tetraploidy and apoptosis in cancer cell lines. © 1999 Cancer Research Campaig
    corecore