603 research outputs found

    The transition between stochastic and deterministic behavior in an excitable gene circuit

    Get PDF
    We explore the connection between a stochastic simulation model and an ordinary differential equations (ODEs) model of the dynamics of an excitable gene circuit that exhibits noise-induced oscillations. Near a bifurcation point in the ODE model, the stochastic simulation model yields behavior dramatically different from that predicted by the ODE model. We analyze how that behavior depends on the gene copy number and find very slow convergence to the large number limit near the bifurcation point. The implications for understanding the dynamics of gene circuits and other birth-death dynamical systems with small numbers of constituents are discussed.Comment: PLoS ONE: Research Article, published 11 Apr 201

    TGFβ activation primes canonical Wnt signaling through the downregulation of AXIN2

    Get PDF
    OBJECTIVES: Aberrant activation of Wnt signaling has been observed in systemic sclerosis (SSc) affected tissues. This study aimed to determine the role of transforming growth factor (TGF)β in driving the increased Wnt signaling, through modulation of AXIN2, a critical regulator of Wnt canonical pathway. METHODS: Canonical Wnt signaling activation was analyzed by TOPFlash TCF/LEF promoter assays. AXIN2 was evaluated in vitro by analysis of AXIN2 primary/mature transcripts expression and decay, TβRI blockade, siRNA-mediated TTP-1 depletion and through XAV-939-mediated AXIN2 stabilisation. In vivo, Axin2 mRNA and protein expression was determined in skin and lung biopsies from TβRIIΔk-fib transgenic mice and littermate controls. RESULTS: SSc fibroblasts display increased response to canonical Wnt ligands despite basal levels of Wnt signaling comparable to healthy control (HC) fibroblasts in vitro. Notably, we show that SSc fibroblasts express reduced basal expression of AXIN2, which is caused by endogenous TGFβ-dependent increase of AXIN2 mRNA decay. Accordingly, we observed that TGFβ decreased AXIN2 expression both in vitro in HC fibroblasts and in vivo, employing TβRIIΔk-fib transgenic mice. Additionally, we demonstrate by AXIN2 loss and gain of function experiments, that the TGFβ-induced increased response to Wnt activation characteristic of SSc fibroblasts is dependent on reduced AXIN2 bioavailability. CONCLUSIONS: This study highlights the importance of reduced AXIN2 bioavailability in mediating the increased canonical Wnt response observed in SSc fibroblasts. This novel mechanism extends our understanding of the processes involved in Wnt/β-catenin-driven pathology and supports the rationale for targeting the TGFβ pathway to regulate the aberrant Wnt signaling observed during fibrosis. This article is protected by copyright. All rights reserved

    Programmability of Chemical Reaction Networks

    Get PDF
    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri Nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior

    Serosal complications of single-agent low-dose methotrexate used in gestational trophoblastic diseases: first reported case of methotrexate-induced peritonitis

    Get PDF
    Methotrexate (MTX) is a folate antagonist widely used both as an anticancer drug and as an immunosupressant. Administration of an 8-day methotrexate and folinic acid regime may be associated with pleuritic chest pain and pneumonitis. We have reviewed the toxicity seen in 168 consecutive patients treated with low-dose MTX for persistent trophoblastic disease. Twenty-five per cent of patients developed serosal symptoms, pleurisy was the commonest complaint. The majority of patients had mild to moderate symptoms which were controlled with simple analgesia and did not necessitate a change in treatment; 11.9% had severe symptoms which necessitated a change in treatment. One patient developed a pericardial effusion and a second patient developed severe reversible peritoneal irritation. The possible aetiology and pathophysiology of methotrexate-induced serosal toxicity is discussed. © 1999 Cancer Research Campaig

    Analysis of Stochastic Strategies in Bacterial Competence: A Master Equation Approach

    Get PDF
    Competence is a transiently differentiated state that certain bacterial cells reach when faced with a stressful environment. Entrance into competence can be attributed to the excitability of the dynamics governing the genetic circuit that regulates this cellular behavior. Like many biological behaviors, entrance into competence is a stochastic event. In this case cellular noise is responsible for driving the cell from a vegetative state into competence and back. In this work we present a novel numerical method for the analysis of stochastic biochemical events and use it to study the excitable dynamics responsible for competence in Bacillus subtilis. Starting with a Finite State Projection (FSP) solution of the chemical master equation (CME), we develop efficient numerical tools for accurately computing competence probability. Additionally, we propose a new approach for the sensitivity analysis of stochastic events and utilize it to elucidate the robustness properties of the competence regulatory genetic circuit. We also propose and implement a numerical method to calculate the expected time it takes a cell to return from competence. Although this study is focused on an example of cell-differentiation in Bacillus subtilis, our approach can be applied to a wide range of stochastic phenomena in biological systems

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Models for synthetic biology

    Get PDF
    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior

    Permeation Mechanisms in the TMEM16B Calcium-Activated Chloride Channels

    Get PDF
    TMEM16A and TMEM16B encode for Ca2+-activated Cl- channels (CaCC) and are expressed in many cell types and play a relevant role in many physiological processes. Here, I performed a site-directed mutagenesis study to understand the molecular mechanisms of ion permeation of TMEM16B. I mutated two positive charged residues R573 and K540, respectively located at the entrance and inside the putative channel pore and I measured the properties of wild-type and mutant TMEM16B channels expressed in HEK-293 cells using whole-cell and excised inside-out patch clamp experiments. I found evidence that R573 and K540 control the ion permeability of TMEM16B depending both on which side of the membrane the ion substitution occurs and on the level of channel activation. Moreover, these residues contribute to control blockage or activation by permeant anions. Finally, R573 mutation abolishes the anomalous mole fraction effect observed in the presence of a permeable anion and it alters the apparent Ca2+-sensitivity of the channel. These findings indicate that residues facing the putative channel pore are responsible both for controlling the ion selectivity and the gating of the channel, providing an initial understanding of molecular mechanism of ion permeation in TMEM16B
    corecore