83 research outputs found
Hospital variation in transfusion and infection after cardiac surgery: a cohort study
<p>Abstract</p> <p>Background</p> <p>Transfusion practices in hospitalised patients are being re-evaluated, in part due to studies indicating adverse effects in patients receiving large quantities of stored blood. Concomitant with this re-examination have been reports showing variability in the use of specific blood components. This investigation was designed to assess hospital variation in blood use and outcomes in cardiac surgery patients.</p> <p>Methods</p> <p>We evaluated outcomes in 24,789 Medicare beneficiaries in the state of Michigan, USA who received coronary artery bypass graft surgery from 2003 to 2006. Using a cohort design, patients were followed from hospital admission to assess transfusions, in-hospital infection and mortality, as well as hospital readmission and mortality 30 days after discharge. Multilevel mixed-effects logistic regression was used to calculate the intrahospital correlation coefficient (for 40 hospitals) and compare outcomes by transfusion status.</p> <p>Results</p> <p>Overall, 30% (95 CI, 20% to 42%) of the variance in transfusion practices was attributable to hospital site. Allogeneic blood use by hospital ranged from 72.5% to 100% in women and 49.7% to 100% in men. Allogeneic, but not autologous, blood transfusion increased the odds of in-hospital infection 2.0-fold (95% CI 1.6 to 2.5), in-hospital mortality 4.7-fold (95% CI 2.4 to 9.2), 30-day readmission 1.4-fold (95% CI 1.2 to 1.6), and 30-day mortality 2.9-fold (95% CI 1.4 to 6.0) in elective surgeries. Allogeneic transfusion was associated with infections of the genitourinary system, respiratory tract, bloodstream, digestive tract and skin, as well as infection with <it>Clostridium difficile</it>. For each 1% increase in hospital transfusion rates, there was a 0.13% increase in predicted infection rates.</p> <p>Conclusion</p> <p>Allogeneic blood transfusion was associated with an increased risk of infection at multiple sites, suggesting a system-wide immune response. Hospital variation in transfusion practices after coronary artery bypass grafting was considerable, indicating that quality efforts may be able to influence practice and improve outcomes.</p
Recurrence and mortality according to Estrogen Receptor status for breast cancer patients undergoing conservative surgery. Ipsilateral breast tumour recurrence dynamics provides clues for tumour biology within the residual breast
BACKGROUND: The study was designed to determine how tumour hormone receptor status affects the subsequent pattern over time (dynamics) of breast cancer recurrence and death following conservative primary breast cancer resection.
METHODS: Time span from primary resection until both first recurrence and death were considered among 2825 patients undergoing conservative surgery with or without breast radiotherapy. The hazard rates for ipsilateral breast tumour recurrence (IBTR), distant metastasis (DM) and mortality throughout 10 years of follow-up were assessed.
RESULTS: DM dynamics displays the same bimodal pattern (first early peak at about 24 months, second late peak at the sixth-seventh year) for both estrogen receptor (ER) positive (P) and negative (N) tumours and for all local treatments and metastatic sites. The hazard rates for IBTR maintain the bimodal pattern for ERP and ERN tumours; however, each IBTR recurrence peak for ERP tumours is delayed in comparison to the corresponding timing of recurrence peaks for ERN tumours. Mortality dynamics is markedly different for ERP and ERN tumours with more early deaths among patients with ERN than among patients with ERP primary tumours.
CONCLUSION: DM dynamics is not influenced by the extent of conservative primary tumour resection and is similar for both ER phenotypes across different metastatic sites, suggesting similar mechanisms for tumour development at distant sites despite apparently different microenvironments. The IBTR risk peak delay observed in ERP tumours is an exception to the common recurrence risk rhythm. This suggests that the microenvironment within the residual breast tissue may enforce more stringent constraints upon ERP breast tumour cell growth than other tissues, prolonging the latency of IBTR. This local environment is, however, apparently less constraining to ERN cells, as IBTR dynamics is similar to the corresponding recurrence dynamics among other distant tissue
DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity
Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity
- …