61 research outputs found

    The OSU1/QUA2/TSD2-Encoded Putative Methyltransferase Is a Critical Modulator of Carbon and Nitrogen Nutrient Balance Response in Arabidopsis

    Get PDF
    The balance between carbon (C) and nitrogen (N) nutrients must be tightly coordinated so that cells can optimize their opportunity for metabolism, growth and development. However, the C and N nutrient balance perception and signaling mechanism remains poorly understood. Here, we report the isolation and characterization of two allelic oversensitive to sugar1 mutants (osu1-1, osu1-2) in Arabidopsis thaliana. Using the cotyledon anthocyanin accumulation and root growth inhibition assays, we show that the osu1 mutants are more sensitive than wild-type to both of the imbalanced C/N conditions, high C/low N and low C/high N. However, under the balanced C/N conditions (low C/low N or high C/high N), the osu1 mutants have similar anthocyanin levels and root lengths as wild-type. Consistently, the genes encoding two MYB transcription factors (MYB75 and MYB90) and an Asn synthetase isoform (ASN1) are strongly up-regulated by the OSU1 mutation in response to high C/low N and low C/high N, respectively. Furthermore, the enhanced sensitivity of osu1-1 to high C/low N with respect to anthocyanin accumulation but not root growth inhibition can be suppressed by co-suppression of MYB75, indicating that MYB75 acts downstream of OSU1 in the high C/low N imbalance response. Map-based cloning reveals that OSU1 encodes a member of a large family of putative methyltransferases and is allelic to the recently reported QUA2/TSD2 locus identified in genetic screens for cell-adhesion-defective mutants. Accumulation of OSU1/QUA2/TSD2 transcript was not regulated by C and N balance, but the OSU1 promoter was slightly more active in the vascular system. Taken together, our results show that the OSU1/QUA2/TSD2-encoded putative methyltransferase is required for normal C/N nutrient balance response in plants

    Histaminergic system in brain disorders: lessons from the translational approach and future perspectives

    Get PDF
    Histamine and its receptors were first described as part of immune and gastrointestinal systems, but their presence in the central nervous system and importance in behavior are gaining more attention. The histaminergic system modulates different processes including wakefulness, feeding, and learning and memory consolidation. Histamine receptors (H1R, H2R, H3R, and H4R) belong to the rhodopsin-like family of G protein-coupled receptors, present constitutive activity, and are subjected to inverse agonist action. The involvement of the histaminergic system in brain disorders, such as Alzheimer’s disease, schizophrenia, sleep disorders, drug dependence, and Parkinson’s disease, is largely studied. Data obtained from preclinical studies point antagonists of histamine receptors as promising alternatives to treat brain disorders. Thus, clinical trials are currently ongoing to assess the effects of these drugs on humans. This review summarizes the role of histaminergic system in brain disorders, as well as the effects of different histamine antagonists on animal models and humans

    Association between salt sensitivity and insulin concentrations in patients with hypertension

    No full text
    This study was performed in 28 patients with mild to moderate hypertension, classified as being either salt sensitive or salt resistant on the basis of the percent decrement in mean arterial blood pressure (MAP) seen 7 days after daily salt intake was decreased from 220 to 30 mmol/L. Ten patients had a percent decrease of MAP > 10% and were defined as being salt sensitive. Salt resistance was defined as a percent decrease in MAP of < 3% and eight patients satisfied this criterion. Both plasma glucose and insulin concentrations following a 75-g oral glucose challenge were significantly higher after the high-salt diet in the salt-sensitive patients. Furthermore, there were correlations of marginal statistical significance between the decrease in MAP after the low-salt diet and the plasma glucose (r = 0.32, P < .10) and insulin (r = 0.38, P < .06) responses to oral glucose. These data are consistent with the view that there is an association between resistance to insulin-mediated glucose disposal and salt sensitivity in patients with high blood pressure
    • …
    corecore