239 research outputs found

    Statistical modeling of ground motion relations for seismic hazard analysis

    Full text link
    We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area-equivalence; wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GMRs (an actual and a modeled one) as a random component leads to a general overestimation of residual variance and hazard. Beside this, we discuss important aspects of classical approaches and discover discrepancies with the state of the art of stochastics and statistics (model selection and significance, test of distribution assumptions, extreme value statistics). We criticize especially the assumption of logarithmic normally distributed residuals of maxima like the peak ground acceleration (PGA). The natural distribution of its individual random component (equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized extreme value. We show by numerical researches that the actual distribution can be hidden and a wrong distribution assumption can influence the PSHA negatively as the negligence of area equivalence does. Finally, we suggest an estimation concept for GMRs of PSHA with a regression-free variance estimation of the individual random component. We demonstrate the advantages of event-specific GMRs by analyzing data sets from the PEER strong motion database and estimate event-specific GMRs. Therein, the majority of the best models base on an anisotropic point source approach. The residual variance of logarithmized PGA is significantly smaller than in previous models. We validate the estimations for the event with the largest sample by empirical area functions. etc

    Protocol for the insight study: a randomised controlled trial of single-dose tocilizumab in patients with depression and low-grade inflammation

    Get PDF
    INTRODUCTION: Observational studies indicate a potentially causal role for interleukin 6 (IL-6), a proinflammatory cytokine, in pathogenesis of depression, but interventional studies based on patients with depression have not been conducted. Tocilizumab, anti-inflammatory drug, is a humanised monoclonal antibody that inhibits IL-6 signalling and is licensed in the UK for treatment of rheumatoid arthritis. The main objectives of this study are to test whether IL-6 contributes to the pathogenesis of depression and to examine potential mechanisms by which IL-6 affects mood and cognition. A secondary objective is to compare depressed participants with and without evidence of low-grade systemic inflammation. METHODS AND ANALYSIS: This is a proof-of-concept, randomised, parallel-group, double-blind, placebo-controlled clinical trial. Approximately 50 participants with International Classification of Diseases 10th revision (ICD-10) diagnosis of depression who have evidence of low-grade inflammation, defined as serum high-sensitivity C reactive protein (hs-CRP) level ≥3 mg/L, will receive either a single intravenous infusion of tocilizumab or normal saline. Blood samples, behavioural and cognitive measures will be collected at baseline and after infusion around day 7, 14 and 28. The primary outcome is somatic symptoms score around day 14 postinfusion. In addition, approximately, 50 depressed participants without low-grade inflammation (serum hs-CRP level <3 mg/L) will complete the same baseline assessments as the randomised cohort. ETHICS AND DISSEMINATION: The study has been approved by the South Central-Oxford B Research Ethics Committee (REC) (Reference: 18/SC/0118). Study findings will be published in peer-review journals. Findings will be also disseminated by conference/departmental presentations and by social and traditional media. TRIAL REGISTRATION NUMBER: ISRCTN16942542; Pre-results

    Performance of the inFLUenza Patient-Reported Outcome (FLU-PRO) diary in patients with influenza-like illness (ILI)

    Get PDF
    BACKGROUND: The inFLUenza Patient Reported Outcome (FLU-PRO) measure is a daily diary assessing signs/symptoms of influenza across six body systems: Nose, Throat, Eyes, Chest/Respiratory, Gastrointestinal, Body/Systemic, developed and tested in adults with influenza. OBJECTIVES: This study tested the reliability, validity, and responsiveness of FLU-PRO scores in adults with influenza-like illness (ILI). METHODS: Data from the prospective, observational study used to develop and test the FLU-PRO in influenza virus positive patients were analyzed. Adults (≥18 years) presenting with influenza symptoms in outpatient settings in the US, UK, Mexico, and South America were enrolled, tested for influenza virus, and asked to complete the 37-item draft FLU-PRO daily for up to 14-days. Analyses were performed on data from patients testing negative. Reliability of the final, 32-item FLU-PRO was estimated using Cronbach's alpha (α; Day 1) and intraclass correlation coefficients (ICC; 2-day reproducibility). Convergent and known-groups validity were assessed using patient global assessments of influenza severity (PGA). Patient report of return to usual health was used to assess responsiveness (Day 1-7). RESULTS: The analytical sample included 220 ILI patients (mean age = 39.3, 64.1% female, 88.6% white). Sixty-one (28%) were hospitalized at some point in their illness. Internal consistency reliability (α) of FLU-PRO Total score was 0.90 and ranged from 0.72-0.86 for domain scores. Reproducibility (Day 1-2) was 0.64 for Total, ranging from 0.46-0.78 for domain scores. Day 1 FLU-PRO scores correlated (≥0.30) with the PGA (except Gastrointestinal) and were significantly different across PGA severity groups (Total: F = 81.7, p<0.001; subscales: F = 6.9-62.2; p<0.01). Mean score improvements Day 1-7 were significantly greater in patients reporting return to usual health compared with those who did not (p<0.05, Total and subscales, except Gastrointestinal and Eyes). CONCLUSIONS: Results suggest FLU-PRO scores are reliable, valid, and responsive in adults with influenza-like illness

    "What Do They Want Me To Say?" The hidden curriculum at work in the medical school selection process: a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been little study of the role of the essay question in selection for medical school. The purpose of this study was to obtain a better understanding of how applicants approached the essay questions used in selection at our medical school in 2007.</p> <p>Methods</p> <p>The authors conducted a qualitative analysis of 210 essays written as part of the medical school admissions process, and developed a conceptual framework to describe the relationships, ideas and concepts observed in the data.</p> <p>Results</p> <p>Findings of this analysis were confirmed in interviews with applicants and assessors. Analysis revealed a tension between "genuine" and "expected" responses that we believe applicants experience when choosing how to answer questions in the admissions process. A theory named "What do they want me to say?" was developed to describe the ways in which applicants modulate their responses to conform to their expectations of the selection process; the elements of this theory were confirmed in interviews with applicants and assessors.</p> <p>Conclusions</p> <p>This work suggests the existence of a "hidden curriculum of admissions" and demonstrates that the process of selection has a strong influence on applicant response. This paper suggests ways that selection might be modified to address this effect. Studies such as this can help us to appreciate the unintended consequences of admissions processes and can identify ways to make the selection process more consistent, transparent and fair.</p

    Search for the standard model Higgs boson at LEP

    Get PDF

    Altered Trabecular Bone Structure and Delayed Cartilage Degeneration in the Knees of Collagen VI Null Mice

    Get PDF
    Mutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1−/− mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1−/− mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1+/+ mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1+/+ mice, but not in Col6a1−/− mice. Col6a1−/− mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1+/+mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1−/− mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data

    Self-reported safety belt use among emergency department patients in Boston, Massachusetts

    Get PDF
    BACKGROUND: Safety belt use is 80% nationally, yet only 63% in Massachusetts. Safety belt use among potentially at-risk groups in Boston is unknown. We sought to assess the prevalence and correlates of belt non-use among emergency department (ED) patients in Boston. METHODS: A cross-sectional survey with systematic sampling was conducted on non-urgent ED patients age ≥18. A closed-ended survey was administered by interview. Safety belt use was defined via two methods: a single-item and a multiple-item measure of safety belt use. Each was scored using a 5-point frequency scale. Responses were used to categorize safety belt use as 'always' or less than 'always'. Outcome for multivariate logistic regression analysis was safety belt use less than 'always'. RESULTS: Of 478 patients approached, 381 (80%) participated. Participants were 48% female, 48% African-American, 40% White, median age 39. Among participants, 250 (66%) had been in a car crash; 234 (61%) had a valid driver's license, and 42 (11%) had been ticketed for belt non-use. Using two different survey measures, a single-item and a multiple-item measure, safety belt use 'always' was 51% and 36% respectively. According to separate regression models, factors associated with belt non-use included male gender, alcohol consumption >5 drinks in one episode, riding with others that drink and drive, ever receiving a citation for belt non-use, believing that safety belt use is 'uncomfortable', and that 'I just forget', while 'It's my usual habit' was protective. CONCLUSION: ED patients at an urban hospital in Boston have considerably lower self-reported safety belt use than state or national estimates. An ED-based intervention to increase safety belt use among this hard-to-reach population warrants consideration

    Polaritonic molecular clock for all-optical ultrafast imaging of wavepacket dynamics without probe pulses

    Full text link
    Conventional approaches to probing ultrafast molecular dynamics rely on the use of synchronized laser pulses with a well-defined time delay. Typically, a pump pulse excites a molecular wavepacket. A subsequent probe pulse can then dissociate or ionize the molecule, and measurement of the molecular fragments provides information about where the wavepacket was for each time delay. Here, we propose to exploit the ultrafast nuclear-position-dependent emission obtained due to large light–matter coupling in plasmonic nanocavities to image wavepacket dynamics using only a single pump pulse. We show that the time-resolved emission from the cavity provides information about when the wavepacket passes a given region in nuclear configuration space. This approach can image both cavity-modified dynamics on polaritonic (hybrid light–matter) potentials in the strong light–matter coupling regime and bare-molecule dynamics in the intermediate coupling regime of large Purcell enhancements, and provides a route towards ultrafast molecular spectroscopy with plasmonic nanocavitiesThis work has been funded by the European Research Council grant ERC-2016-STG-714870 and the Spanish Ministry for Science, Innovation, and Universities—AEI grants RTI2018-099737-B-I00, PCI2018-093145 (through the QuantERA program of the European Commission), and CEX2018-000805-M (through the María de Maeztu program for Units of Excellence in R&D
    • …
    corecore