262 research outputs found
Integration of decision support systems to improve decision support performance
Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes
Prediction of Ligand Binding Using an Approach Designed to Accommodate Diversity in Protein-Ligand Interactions
Computational determination of protein-ligand interaction potential is important for many biological applications including virtual screening for therapeutic drugs. The novel internal consensus scoring strategy is an empirical approach with an extended set of 9 binding terms combined with a neural network capable of analysis of diverse complexes. Like conventional consensus methods, internal consensus is capable of maintaining multiple distinct representations of protein-ligand interactions. In a typical use the method was trained using ligand classification data (binding/no binding) for a single receptor. The internal consensus analyses successfully distinguished protein-ligand complexes from decoys (r2, 0.895 for a series of typical proteins). Results are superior to other tested empirical methods. In virtual screening experiments, internal consensus analyses provide consistent enrichment as determined by ROC-AUC and pROC metrics
Traits associated with innate and adaptive immunity in pigs: heritability and associations with performance under different health status conditions
There is a need for genetic markers or biomarkers that can predict resistance towards a wide range of infectious diseases, especially within a health environment typical of commercial farms. Such markers also need to be heritable under these conditions and ideally correlate with commercial performance traits. In this study, we estimated the heritabilities of a wide range of immune traits, as potential biomarkers, and measured their relationship with performance within both specific pathogen-free (SPF) and non-SPF environments. Immune traits were measured in 674 SPF pigs and 606 non-SPF pigs, which were subsets of the populations for which we had performance measurements (average daily gain), viz. 1549 SPF pigs and 1093 non-SPF pigs. Immune traits measured included total and differential white blood cell counts, peripheral blood mononuclear leucocyte (PBML) subsets (CD4+ cells, total CD8α+ cells, classical CD8αβ+ cells, CD11R1+ cells (CD8α+ and CD8α-), B cells, monocytes and CD16+ cells) and acute phase proteins (alpha-1 acid glycoprotein (AGP), haptoglobin, C-reactive protein (CRP) and transthyretin). Nearly all traits tested were heritable regardless of health status, although the heritability estimate for average daily gain was lower under non-SPF conditions. There were also negative genetic correlations between performance and the following immune traits: CD11R1+ cells, monocytes and the acute phase protein AGP. The strength of the association between performance and AGP was not affected by health status. However, negative genetic correlations were only apparent between performance and monocytes under SPF conditions and between performance and CD11R1+ cells under non-SPF conditions. Although we cannot infer causality in these relationships, these results suggest a role for using some immune traits, particularly CD11R1+ cells or AGP concentrations, as predictors of pig performance under the lower health status conditions associated with commercial farms
Detection of porcine circovirus type 1 in commercial porcine vaccines by loop-mediated isothermal amplification
A loop-mediated isothermal amplification (LAMP) method with a real-time monitoring system was developed for the detection of porcine circovirus type 1 (PCV1) in commercial swine vaccines. This method was highly specific for PCV1. No cross-reaction to porcine circovirus type 2, porcine parvovirus, pseudorabies virus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus was observed. The analytical sensitivity of the LAMP for PCV1 DNA was 10 copies/μl in the case of positive recombinant plasmid comparable to that obtained from the nested polymerase chain reaction (nested PCR). Furthermore, 25 commercial swine vaccines were tested by both the LAMP and the nested PCR, and three of them were tested positive for PCV1 DNA. These results indicate that PCV1 DNA can be real-time detected by the LAMP; the method was highly specific, sensitive, and rapid for the detection of PCV1 DNA, particularly in commercial swine vaccines
Mineralization of Acephate, a Recalcitrant Organophosphate Insecticide Is Initiated by a Pseudomonad in Environmental Samples
An aerobic bacterium capable of breaking down the pesticide acephate (O,S-dimethyl acetyl phosphoramidothioic acid) was isolated from activated sludge collected from a pesticide manufacturing facility. A phylogenetic tree based on the 16 S rRNA gene sequence determined that the isolate lies within the Pseudomonads. The isolate was able to grow in the presence of acephate at concentrations up to 80 mM, with maximum growth at 40 mM. HPLC and LC-MS/MS analysis of spent medium from growth experiments and a resting cell assay detected the accumulation of methamidophos and acetate, suggesting initial hydrolysis of the amide linkage found between these two moieties. As expected, the rapid decline in acephate was coincident with the accumulation of methamidophos. Methamidophos concentrations were maintained over a period of days, without evidence of further metabolism or cell growth by the cultures. Considering this limitation, strains such as described in this work can promote the first step of acephate mineralization in soil microbial communities
Chinese herb mix Tiáo-Gēng-Tāng possesses antiaging and antioxidative effects and upregulates expression of estrogen receptors alpha and beta in ovariectomized rats
<p>Abstract</p> <p>Background</p> <p>Herb mixtures are widely used as an alternative to hormonal therapy in China for treatment of the menopausal syndrome. However, composition of these herb mixtures are complex and their working mechanism is often unknown. This study investigated the effect of Tiáo-Gēng-Tāng (TG-decoction), a Chinese herbal mixture extract, in balancing female hormones, regulating expression of estrogen receptors (ERs), and preventing aging-related tissue damage.</p> <p>Methods</p> <p>Ovariectomized 5-month-old female rats were used to model menopause and treated with either TG-decoction or conjugated estrogen for 8 weeks. Estradiol (E<sub>2</sub>), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in serum and in the hypothalamus. Hypothalamic expression of estrogen receptor (ER) alpha and beta were studied by real-time PCR and western blotting. Total antioxidant capacity (T-AOC), oxidation indicator superoxide dismutase (SOD) activity and tissue damage parameter malondialdehyde (MDA) were measured using standard assays. Aging-related ultrastructural alterations in mitochondria were studied in all animals by transmission electron microscopy.</p> <p>Results</p> <p>TG-decoction-treatment elevated E<sub>2 </sub>and lowered FSH in serum of ovariectomized rats. The potency and efficacy of TG-decoction on the hypothalamus was generally weaker than that of conjugated estrogens. However, TG-decoction was superior in upregulating expression of ERα and β. TG-decoction increased hypothalamic SOD and T-AOC levels and decreased MDAlevels and mitochondrial damage in hypothalamic neurons.</p> <p>Conclusions</p> <p>TG-decoction balances female hormones similarly to conjugated estrogens but less effectively. However, it is superior in up regulating ERα and β and exhibits antioxidative antiaging activities. Whilst it shares similar effects with estrogen, TG-decoction also seems to have distinctive and more complex functions and activities.</p
Regulation of CEACAM1 transcription in human breast epithelial cells
<p>Abstract</p> <p>Background</p> <p>Carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is a transmembrane protein with multiple functions in different cell types. CEACAM1 expression is frequently mis-regulated in cancer, with down-regulation reported in several tumors of epithelial origin and <it>de novo </it>expression of CEACAM1 in lung cancer and malignant melanoma. In this report we analyzed the regulation of CEACAM1 expression in three breast cancer cell lines that varied in CEACAM1 expression from none (MCF7) to moderate (MDA-MB-468) to high (MCF10A, comparable to normal breast).</p> <p>Results</p> <p>Using <it>in vivo </it>footprinting and chromatin immunoprecipitation experiments we show that the <it>CEACAM1 </it>proximal promoter in breast cells is bound in its active state by SP1, USF1/USF2, and IRF1/2. When down-regulated the <it>CEACAM1 </it>promoter remains accessible to USF2 and partially accessible to USF1. Interferon-γ up-regulates CEACAM1 mRNA by a mechanism involving further induction of IRF-1 and USF1 binding at the promoter. As predicted by this analysis, silencing of IRF1 and USF1 but not USF2 by RNAi resulted in a significant decrease in CEACAM1 protein expression in MDA-MB-468 cells. The inactive <it>CEACAM1 </it>promoter in MCF7 cells exhibits decreased histone acetylation at the promoter region, with no evidence of H3K9 or H3K27 trimethylation, histone modifications often linked to condensed chromatin structure.</p> <p>Conclusions</p> <p>Our data suggest that transcription activators USF1 and IRF1 interact to modulate CEACAM1 expression and that the chromatin structure of the promoter is likely maintained in a poised state that can promote rapid induction under appropriate conditions.</p
Intestinal Epithelial Cell-Specific Deletion of PLD2 Alleviates DSS-Induced Colitis by Regulating Occludin
Ulcerative colitis is a multi-factorial disease involving a dysregulated immune response. Disruptions to the intestinal epithelial barrier and translocation of bacteria, resulting in inflammation, are common in colitis. The mechanisms underlying epithelial barrier dysfunction or regulation of tight junction proteins during disease progression of colitis have not been clearly elucidated. Increase in phospholipase D (PLD) activity is associated with disease severity in colitis animal models. However, the role of PLD2 in the maintenance of intestinal barrier integrity remains elusive. We have generated intestinal specific Pld2 knockout mice (Pld2 IEC-KO) to investigate the mechanism of intestinal epithelial PLD2 in colitis. We show that the knockout of Pld2 confers protection against dextran sodium sulphate (DSS)-induced colitis in mice. Treatment with DSS induced the expression of PLD2 and downregulated occludin in colon epithelial cells. PLD2 was shown to mediate phosphorylation of occludin and induce its proteasomal degradation in a c-Src kinase-dependent pathway. Additionally, we have shown that treatment with an inhibitor of PLD2 can rescue mice from DSS-induced colitis. To our knowledge, this is the first report showing that PLD2 is pivotal in the regulation of the integrity of epithelial tight junctions and occludin turn over, thereby implicating it in the pathogenesis of colitis
- …