6 research outputs found

    Trials

    Get PDF
    BACKGROUND: The aim of this open-label, randomized controlled trial conducted in four African countries (Madagascar, Niger, Central African Republic, and Senegal) is to compare three strategies of renutrition for moderate acute malnutrition (MAM) in children based on modulation of the gut microbiota with enriched flours alone, enriched flours with prebiotics or enriched flours coupled with antibiotic treatment. METHODS: To be included, children aged between 6 months and 2 years are preselected based on mid-upper-arm circumference (MUAC) and are included based on a weight-for-height Z-score (WHZ) between - 3 and - 2 standard deviations (SD). As per current protocols, children receive renutrition treatment for 12 weeks and are assessed weekly to determine improvement. The primary endpoint is recovery, defined by a WHZ >/= - 1.5 SD after 12 weeks of treatment. Data collected include clinical and socioeconomic characteristics, side effects, compliance and tolerance to interventions. Metagenomic analysis of gut microbiota is conducted at inclusion, 3 months, and 6 months. The cognitive development of children is evaluated in Senegal using only the Developmental Milestones Checklist II (DMC II) questionnaire at inclusion and at 3, 6, and 9 months. The data will be correlated with renutrition efficacy and metagenomic data. DISCUSSION: This study will provide new insights for the treatment of MAM, as well as original data on the modulation of gut microbiota during the renutrition process to support (or not) the microbiota hypothesis of malnutrition. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT03474276 Last update 28 May 2018

    Forkhead proteins control the outcome of transcription factor binding by antiactivation

    Get PDF
    Transcription factors with identical DNA-binding specificity often activate different genes in vivo. Yeast Ace2 and Swi5 are such activators, with targets we classify as Swi5-only, Ace2-only, or both. We define two unique regulatory modes. Ace2 and Swi5 both bind in vitro to Swi5-only genes such as HO, but only Swi5 binds and activates in vivo. In contrast, Ace2 and Swi5 both bind in vivo to Ace2-only genes, such as CTS1, but promoter-bound Swi5 fails to activate. We show that activation by Swi5 is prevented by the binding of the Forkhead factors Fkh1 and Fkh2, which recruit the Rpd3(Large) histone deacetylase complex to the CTS1 promoter. Global analysis shows that all Ace2-only genes are bound by both Ace2 and Swi5, and also by Fkh1/2. Genes normally activated by either Ace2 or Swi5 can be converted to Ace2-only genes by the insertion of Fkh-binding sites. Thus Fkh proteins, which function initially to activate SWI5 and ACE2, subsequently function as Swi5-specific antiactivators

    Biotransformation of industrial tannins by filamentous fungi

    No full text
    corecore