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Transcription factors with identical DNA-binding specifi-

city often activate different genes in vivo. Yeast Ace2 and

Swi5 are such activators, with targets we classify as Swi5-

only, Ace2-only, or both. We define two unique regulatory

modes. Ace2 and Swi5 both bind in vitro to Swi5-only

genes such as HO, but only Swi5 binds and activates in

vivo. In contrast, Ace2 and Swi5 both bind in vivo to Ace2-

only genes, such as CTS1, but promoter-bound Swi5 fails

to activate. We show that activation by Swi5 is prevented

by the binding of the Forkhead factors Fkh1 and Fkh2,

which recruit the Rpd3(Large) histone deacetylase com-

plex to the CTS1 promoter. Global analysis shows that all

Ace2-only genes are bound by both Ace2 and Swi5, and

also by Fkh1/2. Genes normally activated by either Ace2

or Swi5 can be converted to Ace2-only genes by the

insertion of Fkh-binding sites. Thus Fkh proteins, which

function initially to activate SWI5 and ACE2, subsequently

function as Swi5-specific antiactivators.
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Introduction

Transcription factors with identical DNA-binding domains

can activate different genes in vivo, and this constitutes an

important unsolved puzzle in gene regulation. Proposed

explanatory models include combinatorial control with

other DNA-binding factors or subtle differences in binding

affinity not detected in vitro. Here we present a different

paradigm.

Ace2 and Swi5 are cell-cycle-regulated transcription factors

in Saccharomyces cerevisiae that activate genes expressed in

late M and early G1 phase (Simon et al, 2001). Ace2 and Swi5

have essentially identical DNA-binding domains and recog-

nize the same sequences in vitro (Dohrmann et al, 1996), but

they activate different genes in vivo (Dohrmann et al, 1992).

For instance, the HO gene is only activated by Swi5, while

CTS1 is only activated by Ace2. We show that Fkh1 and Fkh2

can act as selective antiactivators, blocking Swi5, but not

Ace2, from activating transcription. Fkh1 and Fkh2 are G2/M

phase-specific activators for a set of genes that includes Ace2

and Swi5. Fkh1 and Fkh2 also function as repressors at CTS1,

but only against Swi5-dependent activation even though Swi5

and Ace2 bind equivalently to the promoter. This specific

antiactivation requires recruitment of the Rpd3(Large) his-

tone deacetylase (HDAC) complex. Our global analysis sug-

gests that this mechanism operates in vivo at all yeast genes

that are bound by these factors. Moreover, we show that Fkh

antiactivation is transferable. Promoters that are naturally

activated by either Swi5 or Ace2 can be converted to an Ace2-

only activation program by insertion of Fkh-binding sites.

Results and discussion

Genetic identification of CTS1 NRE and Fkh regulatory

factors

We identified a negative regulatory element (NRE) in the

CTS1 promoter which, when deleted or mutated, allowed

Swi5 to activate a CTS1-lacZ plasmid reporter (Dohrmann

et al, 1996). This NRE was localized to 66 bps located

between �404 and �470 bp upstream of the ATG of CTS1,

with two Ace2-binding sites located nearby, between �520

and �545 bp (Figure 1A). The NRE represses activation

independent of position, orientation, and promoter context

(Dohrmann et al, 1996). We precisely deleted the minimal

NRE region from the genomic CTS1 promoter, eliminating

concerns about effects of a plasmid-based assay or the use of

a lacZ reporter gene. This CTS1(nreD) allele was introduced

into strains with mutations in ACE2 and SWI5, and expres-

sion of wild-type CTS1 and CTS1(nreD) were measured

(Figure 1B). The native CTS1 gene is not expressed in the

ace2 mutant (column 3), but strong expression of CTS1(nreD)

is seen even in the absence of the normally required Ace2

activator (column 7). Furthermore, activation of CTS1(nreD)

is Swi5-dependent, since expression is lost in the ace2 swi5

CTS1(nreD) strain (column 8). We also constructed a mutant

CTS1(nre-m) promoter with sequence substitutions through-

out the NRE, maintaining the spacing between the Swi5/

Ace2-binding sites and the transcription start site, and this

mutant promoter showed similar activation by Swi5

(Figure 1B, columns 11–12). Thus, the NRE element in the

CTS1 promoter prevents bound Swi5 from activating CTS1

transcription. We note that the NRE deletion does not fully

restore CTS1 expression in the absence of Ace2, suggesting

that additional repressive mechanisms are still present in the

CTS1(nreD) promoter.
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A genetic screen was carried out to identify mutations in

genes that normally prevent Swi5 from activating CTS1

(Dohrmann et al, 1996). An ace2 strain with an integrated

CTS1-lacZ reporter was mutagenized and suppressors were

identified as blue colonies in the presence of the X-Gal

chromogenic substrate. Genetic analysis and complementa-

tion cloning for one suppressor mutation, nce11, identified

plasmids containing the FKH2 gene. Segregation analysis

demonstrated that the nce11 mutations were allelic with an

fkh2 disruption allele. FKH2 encodes a member of the winged

helix superfamily of DNA-binding transcription factors. Fkh2

and its paralog Fkh1 are redundant activators that bind to the

promoters of the CLB2 group of genes expressed in G2,

including CLB2, SWI5, and ACE2 (Hollenhorst et al, 2000;

Koranda et al, 2000; Kumar et al, 2000; Pic et al, 2000; Zhu

et al, 2000). Strains with single mutations in FKH1 or FKH2

are predominantly normal in cell cycle progression, but fkh1

fkh2 double mutant strains exhibit strong defects consistent

with reduced CLB2 expression. Although we only obtained an

fkh2 mutant in our initial screen, we included FKH1

in subsequent analyses, based on its close homology and

known functional overlap with FKH2.

Fkh1 and Fkh2 bind CTS1 and repress via the NRE

element

Strains were constructed to assess the contributions of FKH1

and FKH2 in blocking Swi5 activation of CTS1. Deletion of

either FKH1 or FKH2 weakly suppresses the ace2 defect in

CTS1 expression, allowing Swi5 to activate CTS1 at 2–3 times

the level observed in an ace2 mutant; similar effects were

seen with both an integrated CTS1-lacZ reporter (Figure 1C)

and the native CTS1 gene (Figure 1D). Suppression of the

ace2 defect in CTS1 expression requires Swi5. Thus, muta-

tions in either fkh1 or fkh2 have similar effects, allowing Swi5

to inappropriately activate expression of CTS1.

Transcription of the SWI5 gene is normally activated by

Fkh1/2 (Hollenhorst et al, 2000; Koranda et al, 2000; Kumar

et al, 2000; Pic et al, 2000; Zhu et al, 2000), so the non-

additive suppression of the ace2 transcriptional defect in the

fkh1 fkh2 double mutant (Figure 1C and D) could be due to

decreased SWI5 expression. To address this problem, a similar

set of strains was constructed with SWI5 expressed from the

MET17 promoter. MET17 expression under noninducing con-

ditions is Fkh-independent and occurs at S/G2 (Spellman

et al, 1998), when SWI5 is expressed. Swi5 produced from
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Figure 1 The NRE in the CTS1 promoter blocks activation by Swi5. (A) Map shows the Ace2/Swi5-binding sites at �546 and �526 from the
ATG codon, the negative regulatory element (NRE) defined by deletion analysis as from �470 to �418 (Dohrmann et al, 1996), and the TATA
element at �313. The transcription start site is at �238 (Dohrmann et al, 1992). The four Fkh-binding sites within the NRE are shown. The
alignment shows the Fkh consensus site (Zhu et al, 2000), the sites from the CTS1 NRE and the ‘TG’ mutation in NRE site 4 (Dohrmann et al,
1996). (B) Swi5 activates CTS1(nreD). RNAs were used for RT-real-time–PCR assays to measure CTS1 RNA levels. RNA values are normalized
to the CTS1(WT) ACE2 SWI5 strain (defined as 100), and the error bars show the standard deviation of the triplicate PCR reactions. (C) Swi5
weakly activates CTS1-lacZ in an fkh1 fkh2 mutant by b-galactosidase activity from CTS1-lacZ. LacZ values are normalized to the ACE2 SWI5
FKH1 FKH2 strain (defined as 100), and the error bars show the standard deviation of triplicate cultures for lacZ assays. (D) Swi5 weakly
activates CTS1 in an fkh1 fkh2 mutant by S1 nuclease protection assay. (E) Swi5 activates CTS1-lacZ in an fkh1 fkh2 mutant when Swi5 is
expressed from the Fkh-independent MET17 promoter. LacZ values are normalized to the ACE2 SWI5 FKH1 FKH2 strain (defined as 100), and
the error bars show the standard deviation of triplicate cultures for lacZ assays. (F) Fkh1 and Fkh2 repress CTS1 via the NRE element by S1
nuclease protection assay.
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this METpHSWI5 construct retains the post-translational

signals for regulated nuclear localization and degradation

within the cell cycle. Immunoblot quantitation shows levels

of Swi5 expressed from the MET17 promoter are less than

two-fold above native Swi5 (data not shown). Using this

METpHSWI5 allele, CTS1 expression in the absence of Ace2

increased four- to five-fold with either a fkh1 or fkh2 single

mutation, and the ace2 fkh1 fkh2 mutant showed CTS1

expression levels about nine-fold over that of ace2 alone

(Figure 1E). The additive increase in Swi5-dependent CTS1

expression in the fkh1 fkh2 double mutant indicates that the

Fkh1 and Fkh2 factors are partially redundant for inhibiting

CTS1 activation by Swi5, but both are required for full

repression. In contrast, we do not see additivity in the fkh1

fkh2 double mutant when SWI5 is expressed from its native

Fkh1/2-dependent promoter (Figure 1C and D). The additive

effect in the fkh1 fkh2 double mutant when SWI5 is expressed

from the Fkh-independent MET17 promoter (Figure 1E) in-

dicates that the Fkh proteins are redundant. Additionally,

combining the fkh1 and fkh2 mutations with the NRE dele-

tion shows only a minor increase in suppression relative to

the effect of the NRE deletion alone (Figure 1F). This com-

parative lack of additivity is consistent with Fkh1/2 acting

through the NRE element at CTS1.

The CTS1 NRE region contains four matches to the con-

sensus Fkh1-binding site (Zhu et al, 2000), with one site

being a perfect match (Figure 1A). We previously identified a

two-nucleotide substitution in the NRE region that allows

Swi5 activation (Dohrmann et al, 1996), and these changes

are within the perfect Fkh consensus site. Chromatin immuno-

precipitation (ChIP) shows that Fkh1 and Fkh2 both bind to

the CTS1 and CLB2 promoters, but no binding was seen to the

CTS1(nreD) allele (Figure 2A and B) demonstrating that Fkh1

and Fkh2 bind specifically to the NRE region of the CTS1

promoter.

Binding of the Rpd3(Large) complex to the NRE element

Recent work has suggested that Fkh2 recruits the Isw2

remodeling factor to promoters, and that Isw2 contributes

to transcriptional repression (Sherriff et al, 2007). To inves-

tigate whether Isw2, or its paralog Isw1, were involved in

blocking Swi5 activation at CTS1, we constructed ace2 isw2,

ace2 isw1, and ace2 isw1 isw2 strains. The substantial reduc-

tion in CTS1 mRNA levels caused by an ace2 mutation is not

suppressed by isw1 or isw2 mutations (data not shown), and

we conclude that these chromatin regulators do not repress at

CTS1. We next examined sin3 and rpd3 mutations, as Sin3

was identified as interacting with Fkh1 and Fkh2 in a global

protein interaction screen (Ho et al, 2002), and Rpd3 is

associated with Sin3 as components of HDAC complexes
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Figure 2 Fkh1 and Fkh2 bind to the CTS1 NRE. (A) ChIP assay
shows Fkh1-HA binding to CTS1 and CLB2. Deletion of the NRE
eliminates Fkh1 binding. Error bars show the standard deviation of
the ChIP PCR reactions performed in triplicate. (B) ChIP assay
shows Fkh2-Myc binding to CTS1 and CLB2. Deletion of the NRE
eliminates Fkh2 binding. Error bars show the standard deviation of
the ChIP PCR reactions performed in triplicate. (C) ChIP assays from
synchronized Ace2-Myc GAL-CDC20 cells show Ace2 binding to
CTS1 but not HO. Flow cytometry profiles show the quality of the
cell cycle synchrony. The vast majority of these haploid cells have
an apparent 2C DNA content even at later time points, as cells
release and progress into G1 without cell separation, which is only
beginning at the 45 min time point. The strain has an swi5 mutation,
and the modest defect in cell separation in an swi5 mutant
(Dohrmann et al, 1992) results also in a small number of cells
with apparent 4C DNA content. Progression from mitotic arrest
through G1 and into S phase was also confirmed by synchronous
bud formation at later time points (data not shown). (D) ChIP
assays from synchronized Swi5-Myc GAL-CDC20 cells show Swi5
binding to HO and CTS1. (E) ChIP assay shows Fkh1-HA from log
phase cells binding to the CLB2 promoter but not the CLB2 ORF.
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that repress transcription (Kurdistani and Grunstein, 2003).

CTS1 mRNA levels are higher in ace2 sin3 and ace2 rpd3

strains than in an ace2 single mutant, indicating that Sin3/

Rpd3 is involved in CTS1 repression (Figure 3A and B).

At least two HDAC complexes contain Rpd3 (Carrozza

et al, 2005; Keogh et al, 2005). The Rpd3(Large) complex

is present primarily at promoters while Rpd3(Small) acts

primarily at transcribed open reading frames (ORFs). While

both complexes contain Sin3 and Rpd3, there are unique

subunits such as Sds3 present only in Rpd3(Large), and Rco1

present only in Rpd3(Small). An sds3 mutation allows CTS1

expression in the absence of Ace2, while an rco1 mutation

does not (Figure 3A and C), and thus Rpd3(Large) represses

CTS1. The CTS1(nreD) allele also allows CTS1 activation by

Swi5, but there is no additive effect from combining this

promoter mutation with either sin3 or sds3 in the ace2 SWI5

strains. This lack of additivity suggests that Rpd3(Large)

represses CTS1 expression via the NRE element. As seen for

the NRE deletion, neither sin3 nor sds3 mutations fully

restore CTS1 expression in the absence of Ace2, suggesting

additional mechanisms of repression. Finally, while sin3 and

sds3 mutations allow CTS1 expression in the absence of Ace2,

CTS1 expression is largely lost in the ace2 swi5 strains,

demonstrating that Swi5 is responsible for CTS1 transcription

in the absence of Ace2.

ChIP experiments were performed to examine binding of

Sin3/Rpd3 complexes to the CTS1 promoter. Sin3, Rpd3, and

Sds3 all bind to CTS1, indicating binding by Rpd3(Large); in

contrast, Rco1, the Rpd3(Small)-specific subunit, does not

bind (Figure 3D). We next compared binding of Rpd3(Large)

to the wild-type CTS1 promoter and the CTS1(nreD) promoter

deletion. Deleting the NRE element results in a substantial

reduction of binding of Sin3 (Figure 3E) and Sds3 (Figure 3F),

demonstrating that the NRE is required for recruiting Rpd3

(Large) to CTS1. As a control, we measured binding to the

INO1 promoter, known to bind Sin3/Rpd3 (Kadosh and

Struhl, 1997). Binding to INO1 was unaffected in the

CTS1(nreD) strain, demonstrating specificity. Interestingly,

Rpd3(Large) binds to the CLB2 promoter as well, which is

also bound by Fkh1 and Fkh2. An ace2 mutation does not

affect Rpd3(Large) binding to CTS1 (data not shown). We

next examined histone acetylation directly at CTS1 in wild-

type and rpd3 strains. The rpd3 mutation results in decreased

histone H3 at CTS1, and increased levels of acetylated H3 and

acetylated H4 (Figure 4A). Normalizing the acetylated his-

tone ChIP signals to the levels of H3 at the promoter shows

that the rpd3 mutation results in a marked increase in histone

acetylation at the CTS1 promoter (Figure 4B). We also

determined whether Rpd3(Large) binding to promoters was

dependent upon Fkh proteins, measuring Sin3-HA binding in

wild-type, fkh1 and fkh2 single mutants, and in the fkh1 fkh2

double mutant (Figure 4C). The Sin3 ChIP signal at the CLB2

and CTS1 promoters is abolished in the fkh1 fkh2 double

mutant, but largely unaffected in the fkh1 or fkh2 single

mutants. We conclude that either Fkh1 or Fkh2 is competent

to recruit Rpd3(Large) to the CLB2 and CTS1 promoters. In

contrast, Rpd3(L) binding to the INO1 promoter is unaffected

in the fkh1 fkh2 double mutant. In summary, these experi-

ments demonstrate that the Rpd3(Large) HDAC complex is

recruited to the CTS1 promoter by Fkh1 and Fkh2,

Rpd3(Large) and functions to specifically reduce CTS1 activa-

tion by Swi5.

Different in vivo DNA binding by Ace2 and Swi5

Although in vitro binding experiments show that Ace2 and

Swi5 recognize the same sequences in promoters, they can

activate transcription of different genes in vivo (Dohrmann

et al, 1996). Ace2, but not Swi5, activates CTS1 expression,

and Swi5, but not Ace2, activates HO. Ace2 and Swi5 are

cell-cycle-regulated transcription factors, and cells with a

GALHCDC20 allele were synchronized within the cell cycle

by removing galactose to arrest in mitosis, followed by re-

addition of galactose (Bhoite et al, 2001). Flow cytometry and

analysis of cycle-regulated mRNAs show a high degree of

synchrony (Figure 2C and data not shown). ChIP experiments

were performed with synchronized cells showing Swi5-Myc

binding to the HO and CTS1 promoters (Figure 2D). Swi5-Myc

binds to both HO and CTS1, although it does not activate

CTS1. Thus, the NRE in CTS1 does not prevent Swi5 from

binding, but acts to prevent promoter-bound Swi5 from

activating transcription.

ChIP with Ace2-Myc shows binding to CTS1 but not to HO

(Figure 2C); Ace2 does not activate HO although it binds

in vitro (Dohrmann et al, 1996). Swi5 does not block Ace2

from binding to HO, as no binding of Ace2 to HO is seen in

either an SWI5 or an swi5 strain. Thus, there are distinct

mechanisms of promoter restriction for Swi5 and Ace2 at HO

and CTS1. Swi5 binds to CTS1, but does not activate tran-

scription. In contrast, Ace2 is unable to activate HO transcrip-

tion simply because it does not bind to the HO promoter.

During the cell cycle, Swi5 binds DNA before Ace2 (Figure 2C

and D), and Swi5 enters the nucleus before Ace2 (Sbia et al,

2007). Work is in progress to understand why Ace2 is unable

to bind to and activate expression of the HO gene, although

Ace2 binds well to HO in vitro.

Genome-wide analysis of regulation and binding by

Swi5 and Ace2

To determine whether these distinct promoter restriction

mechanisms are general for all Ace2 and/or Swi5 targets

throughout the genome, global expression, chromatin bind-

ing, and binding motif correlations were undertaken. First,

genome-wide experiments were performed to determine

whether these Ace2- and Swi5-binding patterns are seen at

other promoters. Expression microarrays were used to define

their targets of regulation and revealed that the RNA levels for

66 genes was reduced more than two-fold in either the ace2

single mutant or the swi5 single mutant or the ace2 swi5

double mutant (Supplementary data). To more stringently

identify genes directly regulated by Ace2 and Swi5, we

eliminated genes that are not cell cycle regulated (Cho et al,

1998; Spellman et al, 1998; Pramila et al, 2006). Among the

23 remaining genes, eight were activated only by Ace2, six by

Swi5 only, and nine required either Ace2 or Swi5 for activa-

tion (Figure 5A). Expression of CDC6 and PCL2 was reduced

less than two-fold, but these genes were included in our

analysis as their expression was previously shown to be

activated by Ace2 or Swi5 (Piatti et al, 1995; Aerne et al,

1998; McBride et al, 1999; Doolin et al, 2001). RT–PCR

experiments confirm the dependence of these genes on

Ace2 and/or Swi5 (Supplementary Figure S1).

To determine Ace2 and Swi5 genomic-binding locations,

Ace2-Myc and Swi5-Myc strains were synchronized at M

with GALHCDC20, and samples taken at timed intervals

after the release were processed for ChIP and hybridized
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to whole-genome DNA microarrays. The complete

experiment was performed three times (Supplementary

data). Some promoters were bound by both Swi5 and

Ace2, and some by Swi5 only; but none of the selected

promoters were bound by Ace2 only (Figure 5D). The

analysis revealed that Ace2 and Swi5 both bind to all

genes activated only by Ace2, but only Swi5 binds to genes

activated only by Swi5. This is the same pattern observed

for CTS1 and HO (Figure 2C and D). Cells synchronized

with GALHCDC20 and ChIPs quantitated with real-time
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PCR confirm the ChIP–chip results for selected representative

genes (Figure 6A).

Upstream Fkh sites define genes that are activated only

by Ace2

At CTS1, Fkh binding is required to prevent Swi5 from

activating transcription. To assess whether Fkh-binding

sites are present at other genes activated by Ace2 but not

by Swi5 (Ace2-only genes), we analyzed data from the

expression microarray and ChIP–chip experiments (Figure

5A and D) in relation to the genome-wide distribution of

DNA sequence motifs bound by Ace2/Swi5 and/or Fkh1/2

(MacIsaac et al, 2006) (Figure 5B). Ace2-only genes contain

both Ace2/Swi5 and Fkh sites (red), while Swi5-only genes
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Figure 4 rpd3 affects histone acetylation and fkh mutation affect Rpd3(L) binding to CTS1. (A) Lysates from wild-type or rpd3 mutant cells
were immunoprecipitated with either no antibody, anti-H3, anti-H3(K14-Ac), or anti-H4(-Ac). PCR reactions were performed with CTS1 and
control primers, and the ratio of these ChIP values were normalized to ratios for PCR reactions with the two primer sets using input DNA. Error
bars show the standard deviation of the ChIP PCR reactions performed in triplicate. (B) Using the data in part (A), the ChIP ratios for H3(K14-
Ac) and H4(-Ac) were divided by the ChIP ratios for histone H3. (C) ChIP assays of Sin3-HA binding in wild-type, fkh1, fkh2, and fkh1 fkh2
strains show that either Fkh1 or Fkh2 can recruit Sin3-HA to CLB2 and CTS1, while fkh mutations do not affect Sin3-HA binding to the INO1
promoter.

Figure 3 Rpd3(Large) regulates CTS1 via the NRE. (A) RT–PCR assays show that sin3 and sds3 mutations allow CTS1 expression despite an
ace2 mutation, while rco1 does not suppress. RNA values are normalized to the ace2 mutant (defined as 1); CTS1 RNA in the ace2 mutant is 2%
of the ACE2þ strain. (B) RT–PCR assays show that CTS1 can be activated by Swi5 in an sin3 mutant, and that the effects of an sin3 mutation
and deletion of the NRE promoter element are not additive. RNA values are normalized to the CTS1(WT) ACE2 SWI5 SIN3 strain (defined as
100), and the error bars show the standard deviation of the triplicate PCR reactions. (C) RT–PCR assays show that CTS1 can be activated by
Swi5 in an sds3 mutant, and that the effects of an sds3 mutation and deletion of the NRE promoter element are not additive. RNA values are
normalized to the CTS1(WT) ACE2 SWI5 SIN3 strain (defined as 100), and the error bars show the standard deviation of the triplicate PCR
reactions. (D) The Sin3-HA, Rpd3-Myc, and Sds3-Myc components of Rpd3(Large) bind to CTS1 in a ChIP assay, while the Rco1-Myc
component of Rpd3(Small) does not. Error bars show the standard deviation of the ChIP PCR reactions performed in triplicate. (E) ChIP assay
shows Sin3-HA binding to CTS1, CLB2, and INO1. Deletion of the NRE reduces Sin3 binding. Error bars show the standard deviation of the ChIP
PCR reactions performed in triplicate. (F) ChIP assay shows Sds3-HA binding to CTS1, CLB2, and INO1. Deletion of the NRE reduces Sds3
binding. Error bars show the standard deviation of the ChIP PCR reactions performed in triplicate. (G) ChIP assay shows Sds3-HA binding to
EGT2 and CTS1. Insertion of the NRE element from CTS1 into the EGT2(þNRE) promoter increases Sds3 binding. Error bars show the standard
deviation of the ChIP PCR reactions performed in triplicate.
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contain Ace2/Swi5 sites but lack Fkh sites (yellow)

(Figure 7A). Examining genes whose expression is reduced

in an ace2 mutant, we find that both Ace2 (Figure 7B) and

Swi5 (Figure 7C) bind, and all of these genes contain Fkh-

binding sites. In contrast, Swi5 (Figure 7D) but not Ace2

(Figure 7E) binds to Swi5-only genes, and none of these

contain Fkh sites. The Ace2-only genes all contain multiple

Fkh sites, but there is no common pattern of binding site

spacing or orientation in the three classes of promoters

(Figure 6B). ChIP–chip experiments (Simon et al, 2001)

show Fkh1 and Fkh2 bind to the Ace2-only genes, but not

to either class of gene activated by Swi5 (Figure 5C).

Introduction of Fkh sites into promoters reduces

activation by Swi5 but not Ace2

To test whether Fkh sites are sufficient to reduce activation by

Swi5, we inserted the CTS1 NRE, containing Fkh-binding

sites into the native promoters of the EGT2 and SIC1 genes.

EGT2 and SIC1 are activated by both Ace2 and Swi5 (Knapp

et al, 1996; Kovacech et al, 1996; Toyn et al, 1997), and are

not normally bound by Fkh1 or Fkh2 (Simon et al, 2001).

Expression of EGT2 and SIC1 is modestly reduced in ace2 or

swi5 single mutants, but more substantially reduced in the

ace2 swi5 double mutant (Figure 8). In the ace2 swi5 strain,

EGT2 levels are reduced to undetectable levels, while SIC1

mRNA is reduced to 30% of wild type. Presumably, there are

other basal activators of SIC1 expression in addition to Ace2

and Swi5. In contrast, CTS1 mRNA is absent in the ace2 SWI5

strain.

We made two types of insertions into the EGT2 and SIC1

promoters. Both were made at the endogenous chromosomal

locations with no loss of native sequences. The

EGT2(þNRE) and SIC1(þNRE) promoters have a region

from the CTS1 promoter with the entire NRE element in-

serted, while the EGT2(þNRE-m) and SIC1(þNRE-m) pro-

moters contain a similar sized fragment from CTS1 except for

sequence substitutions throughout the four Fkh sites (see

Figure 1). Expression of EGT2(þNRE) and SIC1(þNRE) is

significantly reduced in the ace2 strain, where Swi5 is

the remaining major activator (Figure 8). Expression of

SIC1(þNRE) is reduced to nearly the level seen in the ace2

swi5 strain, providing additional evidence that the NRE

blocks activation by Swi5 (Figure 8).

Data from EGT2(þNRE) suggests that the NRE is only

partially able to block Swi5 activation at EGT2. This may be

due to the number and dispersed locations of Swi5/Ace2-

binding motifs throughout the promoter (see Figure 6B). For

both promoters, however, the NRE reproducibly confers at

least a two-fold reduction only in Swi5-dependent activation,

with no effect on Ace2-dependent activation (Figure 8). This

results in an approximately three-fold bias for Ace2 relative to

Swi5 for these promoters, which are normally equivalently

sensitive to either activator. The EGT2(þNRE-m) and

SIC1(þNRE-m) promoters with a CTS1 promoter fragment

lacking the Fkh sites are expressed at levels similar to that of

wild-type promoters, indicating that the observed effects are

not due to alterations in spacing or architecture within these

promoters. These experiments show that Fkh sites are suffi-

cient to prevent Swi5 from activating specific target genes.

We also examined Sds3 binding to the EGT2(þNRE)

promoter. As shown in Figure 3G, there is increased Sds3

binding to EGT2(þNRE) compared to wild-type EGT2. This

Figure 5 Expression and promoter occupancy of Ace2- and Swi5-dependent genes. (A) Relative RNA levels in ace2, swi5, and ace2 swi5 strains
as a log2 ratio (mutant/WT). RNA levels with greater than a two-fold reduction are shown in red. (B) The presence of binding sites for Ace2/
Swi5 or Fkh1/2 in promoters, from MacIsaac et al (2006). (C) The degree of Fkh1 or Fkh2 binding by ChIP–chip are the binding ratios from the
data supporting Simon et al (2001), with binding levels greater than two standard deviations from the mean shown in red. (D) Ace2 and Swi5
binding as a heat map showing the results for an untagged control strain, and for the Ace2-Myc and Swi5-Myc strains at the CDC20 arrest (t¼ 0)
and time points after release. The heatmap represents the results of 33 microarray experiments (Materials and methods) with the number of
repeats for each time point as shown in Supplementary Table 3. Percentile ranks were calculated for each experiment and then averaged for
each time point to generate the values shown. A color scale represents the degree of binding expressed as percentile ranks of ChIP enrichment.
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demonstrates that the NRE element with Fkh-binding sites is

sufficient to recruit the Rpd3(Large) complex to promoters.

DNA binding by Fkh1 and Fkh2 varies during the cell

cycle but this is unlikely to be required for the

antiactivation specificity

Fkh1 and Fkh2 binding at CLB2 group promoters activates

transcription in G2, yet binding at Ace2-activated targets

results in selective repression in G2/M. Additionally, binding

of Swi5 and Ace2 to their G1 targets occurs at different times,

with Swi5 preceding Ace2. Thus, we hypothesized that

differences in Fkh1 and Fkh2 occupancy at CTS1 and CLB2

with respect to the cell cycle might determine their roles as

either activators versus selective antiactivators. We therefore

directly analyzed the Fkh1 and Fkh2 proteins during the

cell cycle by ChIP and by western immunoblotting

(Supplementary Figure S2). During the cell cycle, ChIP

experiments show significant variation in binding to CTS1

and CLB2 over time, with maxima during the M and early G1

period. Additionally, western blots show subtle differences in

abundance and mobility of Fkh proteins during the cell cycle.

However, the cell cycle times of these changes do not explain

why Fkh1 and Fkh2 differently repress and activate CTS1 and

CLB2. Thus, it appears unlikely that the mechanism of Swi5-

specific antiactivation involves restricting Fkh occupancy of

CTS1 to a limited period of the cell cycle.

Activation of CLB2 involves Fkh2 recruiting the Ndd1

activator at certain cell cycle times (Koranda et al, 2000). At

other times of the cell cycle, Fkh1 and Fkh2, in the absence of

Ndd1, actually repress CLB2 transcription (Hollenhorst et al,

2000), an idea supported by the observation that fkh1 muta-

tions suppress the lethality caused by deletion of the NDD1

gene (Koranda et al, 2000). CLB2 activation during G2

requires the presence of Mcm1 at the promoter (Althoefer

et al, 1995a). At CTS1, in the absence of Mcm1 interaction,

but where there are multiple Fkh-binding sites, Fkh1 and

Fkh2 binding may continuously reinforce each other, result-

ing in a sharp peak of Fkh2 binding to CTS1 at G2/M and a

subsequent Fkh1 peak in M/G1, resulting in sufficient occu-

pancy by both factors for full repression. Thus, promoter

context and neighboring DNA-binding proteins may deter-

mine the activity of Fkh1 and Fkh2.

Fkh proteins do not bind to the CLB2 ORF

Because both Ace2 and Swi5 are equivalently able to program

Pol II transcription in Fkh-independent contexts, we hypothe-

sized that the mechanism of discrimination may involve FKH-

dependent differences in the ability of Ace2 and Swi5 to

program a step subsequent to Pol II recruitment. Morillon

et al (2003) reported that Fkh1, in addition to binding to the

CLB2 promoter, also binds to the CLB2-coding region. The

authors postulated that Fkh proteins influence transcriptional

elongation and termination, and regulate phosphorylation of

the Pol II CTD. CLB2 is cell cycle regulated, expressed soon

after the release during G2. One prediction based on Morillon

et al (2003) is that the Fkh proteins would be bound to the

promoter before expression, and then appear to travel down

the ORF after transcription begins. A variation would be for

Fkh1 to be bound to the CLB2 ORF throughout the cell cycle,

irrespective of whether the gene is transcribed or not.

To test these models, we examined the kinetics of Fkh1

binding to this ORF, using chromatin extracts from synchro-

nized cells expressing Fkh1-HA. However, our ChIP assays

provided no evidence for Fkh1 binding to the CLB2 ORF at a

level above background during the cell cycle (Supplementary

Figure S3A). We also looked for Fkh1 binding to the CLB2

ORF in log phase cells, as nonsynchronized cells had been

used by Morillon et al (2003). Once again, we did not see any

Fkh1 binding to the CLB2 ORF, although we did see strong

binding to the CLB2 promoter (Figure 2E) in both sets of

samples, as well as strongly periodic binding to the CTS1

promoter.

Based on the suggestion that Fkh proteins regulate pol II

CTD phosphorylation (Morillon et al, 2003), we considered a

model where Swi5 binding leads to pol II recruitment to

CTS1, but the Fkh proteins prevent pol II from initiating

transcription. However, ChIP shows equivalent pol II binding

to CTS1 in WT versus swi5 strains, and pol II binding is

reduced to equivalent levels in ace2 and ace2 swi5 strains

(Supplementary Figure S3B). This result rules out a model
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where Swi5 recruits pol II to CTS1, but the Fkh proteins block

the pol II from initiating transcription. Thus, the selective

antiactivation mechanism impinges on the transcriptional

activation program at an earlier step.

Conclusions

We have analyzed divergent regulation by paralogous tran-

scription factors with identical DNA-binding domains. Ace2 is

prevented from binding to genes activated solely by Swi5. In

contrast, Swi5 binds to, but cannot activate, genes like CTS1

due to the presence of Fkh1 and Fkh2, which function as

selective antiactivators. Antiactivation has been observed in

eukaryotes before at the yeast GAL genes (Traven et al, 2006).

Here, the Gal80 protein blocks the activation potential of the

Gal4 activator, and antiactivation requires physical inter-

action between the two proteins. In the presence of galactose,

the Gal3 protein overcomes the antiactivation. In contrast,

the antiactivation effected by Fkh1/2 onto Swi5 involves two
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separate DNA-binding proteins that bind to separate elements

on the same promoter and the recruitment of a HDAC.

Further work is needed to understand how the Fkh proteins

act as selective antiactivators, blocking activation by Swi5 but

not by Ace2, and the unique attributes possessed by Ace2 that

allow it to overcome this antiactivation.

The Fkh1 and Fkh2 proteins have been previously char-

acterized as activators of the G2/M CLB2 group of genes,

although they may have negative roles at these genes in other

cell cycle phases (Hollenhorst et al, 2000; Kumar et al, 2000;

Zhu et al, 2000). The CLB2 group promoters all contain a

single Mcm1-binding site in close apposition to a single Fkh

consensus site (Althoefer et al, 1995b; Pic et al, 2000; Boros

et al, 2003). Here, we show that the Ace2-activated/Fkh-anti-

activated group of M/G1 promoters contains multiple Fkh

consensus sites, with no discernible Mcm1-binding se-

quences; additionally, no Mcm1 binding has been detected

at these promoters (data not shown, Simon et al, 2001).

Moreover, Mcm1-Fkh recruit the cell-cycle-regulated tran-

scriptional activator Ndd1 to CLB2-group promoters

(Koranda et al, 2000), but no Ndd1 recruitment to Ace2-

regulated promoters has been detected (Simon et al, 2001).

These differences may explain in part the contrasting earlier

function of Fkh proteins at G2/M versus the Ace2 and Swi5-

bound genes expressed in late M and G1 phases. We propose

that Ace2-activated M/G1 target genes are selectively regu-

lated through a novel antiactivation mechanism, in part

comprising HDAC recruitment by the Fkh1/Fkh2 paralogs,

determining which target genes are activated by Ace2 as

opposed to Swi5 during the ordered cascade of the cell cycle

transcriptional program (Simon et al, 2001; Pramila et al,

2006). It is possible that the acetylation of Swi5 is important

for its function as an activator, and the HDACs block this

activation; further work will be needed to test this hypothesis.

Materials and methods

All yeast strains used are listed in Supplementary Table 1 and are
isogenic in the W303 background (Thomas and Rothstein, 1989).
Standard genetic methods were used for strain construction
(Rothstein, 1991; Sherman, 1991), and details on construction of
specific alleles are presented in the Supplementary data. Cells were
grown at 301C in YEPD medium (Sherman, 1991). Cell cycle
synchronization was performed either by a-factor arrest and release
as described (Mitra et al, 2006), or by galactose withdrawal and
re-addition with a GALHCDC20 strain (Bhoite et al, 2001). A high
degree of synchrony was demonstrated by flow cytometry analysis,

budding indices, and analysis of cycle-regulated mRNAs (data not
shown).

RNA levels were determined with S1 nuclease protection assays
as described (Voth et al, 2005) or by RT–PCR. For RT–PCR, DNA-
free total RNA was purified from mid-log cultures by hot-acid
phenol extraction followed by precipitation through CsCl by
ultracentrifugation (Ausubel et al, 1987). Gene expression levels
were quantitated by randomly primed cDNA synthesis with M-MLV
Reverse Transcriptase (Invitrogen), followed by real-time quantita-
tive PCR. For microarrays, RNA from ace2, swi5, and ace2 swi5
strains were reverse transcribed and each was competitively
hybridized with RNA from wild-type strains on Agilent oligonucleo-
tide arrays. Swi5 levels in immunoblots were quantitated using an
Odyssey system (Li-Cor).

All ChIPs (except for ChIP–chips) were performed as described
(Bhoite et al, 2001) using 9E11 (Abcam) or 4A6 (Upstate)
monoclonal antibody to the Myc epitope, and 12CA5 antibody to
the HA epitope (University of Utah Bioprocessing Resource), anti-
histone H3 (07–690, Upstate), anti-histone H3(Ac-Lys14) (07–353,
Upstate), anti-acetyl-histone H4 (06–598, Upstate), and antibody
coated magnetic beads (Rabbit and Pan Mouse IgG beads, Dynal
Biotech). ChIP assays were analyzed as described, either using
multiplex PCR (Bhoite et al, 2001) or by real-time PCR (Eriksson
et al, 2004). Oligonucleotides used for ChIP, RT–PCR, or S1 nuclease
protection are listed in Supplementary Table 2. Immunoblots of
proteins transferred from low-bis-polyacrylamide gel electrophor-
esis (Whalen and Steward, 1993) were probed with anti-HA, anti-
Myc, and anti-PGK 22C5-D8 (Molecular Probes) antibodies, and
visualized with an Odyssey Infrared system (LI-COR Biosciences
Lincoln, NE). Quantitation of ChIP was calculated as described
(Eriksson et al, 2004), except that ChIP signals were additionally
normalized to the total DNA amount from input chromatin for
each sample. Standard deviations for normalized PCR replicates
were calculated using Equation (7) of van Kempen and van Vliet
(2000).

For the ChIP–chip experiments, eight separate synchrony and
immunoprecipitation experiments were performed (four for Ace2
and four for Swi5). A total of 33 ChIP–chip hybridizations were
performed, and are listed in Supplementary Table 3. The ChIP–chip
experiments were performed as essentially as described (Lieb et al,
2001), with complete details provided in the Supplementary data.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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