12 research outputs found

    The enzymatic formation of novel bile acid primary amides.

    No full text
    Bifunctional peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the copper-, ascorbate-, and O(2)-dependent cleavage of C-terminal glycine-extended peptides and N-acylglycines to the corresponding amides and glyoxylate. The alpha-amidated peptides and the long-chain acylamides are hormones in humans and other mammals. Bile acid glycine conjugates are also substrates for PAM leading to the formation of bile acid amides. The (V(MAX)/K(m))(app) values for the bile acid glycine conjugates are comparable to other known PAM substrates. The highest (V(MAX)/K(m))(app) value, 3.1 +/- 0.12 x 10(5) M(-1) s(-1) for 3-sulfolithocholylglycine, is 6.7-fold higher than that for d-Tyr-Val-Gly, a representative peptide substrate. The time course for O(2) consumption and glyoxylate production indicates that bile acid glycine conjugate amidation is a two-step reaction. The bile acid glycine conjugate is first converted to an N-bile acyl-alpha-hydroxyglycine intermediate which is ultimately dealkylated to the bile acid amide and glyoxylate. The enzymatically produced bile acid amides and the carbinolamide intermediates were characterized by mass spectrometry and two-dimensional (1)H-(13)C heteronuclear multiple quantum coherence NMR

    N-acylglycine amidation: implications for the biosynthesis of fatty acid primary amides.

    No full text
    Bifunctional peptidylglycine alpha-amidating enzyme (alpha-AE) catalyzes the O2-dependent conversion of C-terminal glycine-extended prohormones to the active, C-terminal alpha-amidated peptide and glyoxylate. We show that alpha-AE will also catalyze the oxidative cleavage of N-acylglycines, from N-formylglycine to N-arachidonoylglycine. N-Formylglycine is the smallest amide substrate yet reported for alpha-AE. The (V/K)app for N-acylglycine amidation varies approximately 1000-fold, with the (V/K)app increasing as the acyl chain length increases. This effect is largely an effect on the KM,app; the KM,app for N-formylglycine is 23 +/- 0.88 mM, while the KM,app for N-lauroylglycine and longer chain N-acylglycines is in the range of 60-90 microM. For the amidation of N-acetylglycine, N-(tert-butoxycarbonyl)glycine, N-hexanoylglycine, and N-oleoylglycine, the rate of O2 consumption is faster than the rate of glyoxylate production. These results indicate that there must be the initial formation of an oxidized intermediate from the N-acylglycine before glyoxylate is produced. The intermediate is shown to be N-acyl-alpha-hydroxyglycine by two-dimensional 1H-13C heteronuclear multiple quantum coherence (HMQC) NMR
    corecore