19,508 research outputs found

    Effect of inflow control on inlet noise of a cut-on fan

    Get PDF
    The control of turbulence and other inflow disturbances in anechoic chambers for static turbofan noise studies was studied. A cut-on, high tip speed fan stage was acoustically tested with three configurations of an inflow control device in an anechoic chamber. Although this was a cut-on design, rotor inflow interaction appeared to be a much stronger source of blade passing tone radiated from the inlet than rotor stator interaction for the 1.6 mean rotor chord separation. Aft external suction applied to the area where the inflow control device joined the inlet produced a further reduction in blade passing tone, suggesting that disturbances in the forward flow on the outside of the inlet were superimposed on the inlet boundary layer and were a significant source of tone noise

    Two surveys of the needs of engineering schools in the field of biomechanical and human factors engineering education

    Get PDF
    Surveys of engineering school needs in field of biomechanical and human factors engineering educatio

    Transient upsets in microprocessor controllers

    Get PDF
    The modeling and analysis of transient faults in microprocessor based controllers are discussed. Such controllers typically consist of a microprocessor, read only memory storing and application program, random access memory for data storage, and input/output devices for external communications. The effects of transient faults on the performance of the controller are reviewed. An instruction level perspective of performance is taken which is the basis of a useful high level program state description of the microprocessor controller. A transition matrix is defined which determines the controller's response to transient fault arrivals

    The Carriers of the "Unidentified" Infrared Emission Features: Clues from Polycyclic Aromatic Hydrocarbons with Aliphatic Sidegroups

    Full text link
    The "unidentified" infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μ\mum are ubiquitously seen in various astrophysical regions. The UIE features are characteristic of the stretching and bending vibrations of aromatic hydrocarbons. The 3.3 μ\mum feature resulting from aromatic C--H stretches is often accompanied by a weaker feature at 3.4 μ\mum often attributed to aliphatic C--H stretches. The ratio of the observed intensity of the 3.3 μ\mum aromatic C--H feature (I3.3I_{3.3}) to that of the 3.4 μ\mum aliphatic C--H feature (I3.4I_{3.4}) allows one to estimate the aliphatic fraction (i.e. NC,aliph/NC,aromN_{\rm C,aliph}/N_{\rm C,arom}, the number of C atoms in aliphatic units to that in aromatic rings) of the UIE carriers, provided the intrinsic oscillator strengths of the 3.3 μ\mum aromatic C--H stretch (A3.3A_{3.3}) and the 3.4 μ\mum aliphatic C--H stretch (A3.4A_{3.4}) are known. In this article we summarize the computational results on A3.3A_{3.3} and A3.4A_{3.4} and their implications for the aromaticity and aliphaticity of the UIE carriers. We use density functional theory and second-order perturbation theory to derive A3.3A_{3.3} and A3.4A_{3.4} from the infrared vibrational spectra of seven PAHs with various aliphatic substituents (e.g., methyl-, dimethyl-, ethyl-, propyl-, butyl-PAHs, and PAHs with unsaturated alkyl-chains). The mean band strengths of the aromatic (A3.3A_{3.3}) and aliphatic (A3.4A_{3.4}) C--H stretches are derived and then employed to estimate the aliphatic fraction of the UIE carriers by comparing A3.4A_{3.4}/A3.3A_{3.3} with I3.4I_{3.4}/I3.3I_{3.3}. We conclude that the UIE emitters are predominantly aromatic, as revealed by the observationally-derived ratio ~ 0.12 and the computationally-derived ratio ~ 1.76 which suggest an upper limit of NC,aliph/NC,aromN_{\rm C,aliph}/N_{\rm C,arom} ~ 0.02 for the aliphatic fraction of the UIE carriers.Comment: 67 pages, 18 figures, 8 tables; invited article accepted for publication in "New Astronomy Review"; a considerable fraction of this article is concerned with the computational techniques and results, readers who are mainly interested in astrophysics may wish to only read "Introduction", and "Astrophysical Implications

    Noise data from tests of a 1.83 meter (6-ft-) diameter variable-pitch 1.2-pressure-ratio fan (QF-9)

    Get PDF
    Acoustic and aerodynamic data for a 1.83-meter (6-ft.) diameter fan suitable for a quiet engine for short-takeoff-and-landing (STOL) aircraft are documented. The QF-9 rotor blades had an adjustable pitch feature which provided a means for testing at several rotor blade setting angles, including one for reverse thrust. The fan stage incorporated features for low noise. Far-field noise around the fan was measured without acoustic suppression over a range of operating conditions for six different rotor blade setting angles in the forward thrust configuration, and for one in the reverse configuration. Complete results of one-third-octave band analysis of the data are presented in tabular form. Also included are power spectra, data referred to the source, and sideline perceived noise levels

    The Carriers of the Interstellar Unidentified Infrared Emission Features: Constraints from the Interstellar C-H Stretching Features at 3.2-3.5 Micrometers

    Get PDF
    The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometer, commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules, have been recently ascribed to mixed aromatic/aliphatic organic nanoparticles. More recently, an upper limit of <9% on the aliphatic fraction (i.e., the fraction of carbon atoms in aliphatic form) of the UIE carriers based on the observed intensities of the 3.4 and 3.3 micrometer emission features by attributing them to aliphatic and aromatic C-H stretching modes, respectively, and assuming A_34./A_3.3~0.68 derived from a small set of aliphatic and aromatic compounds, where A_3.4 and A_3.3 are respectively the band strengths of the 3.4 micrometer aliphatic and 3.3 micrometer aromatic C-H bonds. To improve the estimate of the aliphatic fraction of the UIE carriers, here we analyze 35 UIE sources which exhibit both the 3.3 and 3.4 micrometer C-H features and determine I_3.4/I_3.3, the ratio of the power emitted from the 3.4 micrometer feature to that from the 3.3 micrometer feature. We derive the median ratio to be ~ 0.12. We employ density functional theory and second-order perturbation theory to compute A_3.4/A_3.3 for a range of methyl-substituted PAHs. The resulting A_3.4/A_3.3 ratio well exceeds 1.4, with an average ratio of ~1.76. By attributing the 3.4 micrometer feature exclusively to aliphatic C-H stretch (i.e., neglecting anharmonicity and superhydrogenation), we derive the fraction of C atoms in aliphatic form to be ~2%. We therefore conclude that the UIE emitters are predominantly aromatic.Comment: 14 pages, 5 figures, 1 table; accepted for publication in The Astrophysical Journa

    Acoustic and aerodynamic performance of a variable-pitch 1.83-meter-(6-ft) diameter 1.20-pressure-ratio fan stage (QF-9)

    Get PDF
    Far field noise data and related aerodynamic performance are presented for a variable pitch fan stage having characteristics suitable for low noise, STOL engine application. However, no acoustic suppression material was used in the flow passages. The fan was externally driven by an electric motor. Tests were made at several forward thrust rotor blade pitch angles and one for reverse thrust. Fan speed was varied from 60 to 120 percent of takeoff (design) speed, and exhaust nozzles having areas 92 to 105 percent of design were tested. The fan noise level was at a minimum at the design rotor blade pitch angles of 64 deg for takeoff thrust and at 57 deg for approach (50 percent takeoff thrust). Perceived noise along a 152.4-m sideline reached 100.1 PNdb for the takeoff (design) configuration for a stage pressure ratio of 1.17 and thrust of 57,600 N. For reverse thrust the PNL values were 4 to 5 PNdb above the takeoff values at comparable fan speeds

    Low flight speed acoustic results for a supersonic inlet with auxiliary inlet doors

    Get PDF
    A model supersonic inlet with auxiliary inlet doors and bounday layer bleeds was acoustically tested in simulated low speed flight up to Mach 0.2 in the NASA Lewis 9x15 Anechoic Wind Tunnel and statically in the NASA Lewis Anechoic Chamber. A JT8D refan model was used as the noise source. Data were also taken for a CTOL inlet and for an annular inlet with simulated centerbody support struts. Inlet operation with open auxiliary doors increased the blade passage tone by about 10 dB relative to the closed door configuration although noise radiation was primarily through the main inlet rather than the doors. Numerous strong spikes in the noise spectra were associated with the bleed system, and were strongly affected by the centerbody location. The supersonic inlet appeared to suppress multiple pure tone (MPT) generation at the fan source. Inlet length and the presence of support struts were shown not to cause this MPT suppression

    Geodesics for Efficient Creation and Propagation of Order along Ising Spin Chains

    Full text link
    Experiments in coherent nuclear and electron magnetic resonance, and optical spectroscopy correspond to control of quantum mechanical ensembles, guiding them from initial to final target states by unitary transformations. The control inputs (pulse sequences) that accomplish these unitary transformations should take as little time as possible so as to minimize the effects of relaxation and decoherence and to optimize the sensitivity of the experiments. Here we give efficient syntheses of various unitary transformations on Ising spin chains of arbitrary length. The efficient realization of the unitary transformations presented here is obtained by computing geodesics on a sphere under a special metric. We show that contrary to the conventional belief, it is possible to propagate a spin order along an Ising spin chain with coupling strength J (in units of Hz), significantly faster than 1/(2J) per step. The methods presented here are expected to be useful for immediate and future applications involving control of spin dynamics in coherent spectroscopy and quantum information processing
    • …
    corecore