51 research outputs found

    Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer

    Get PDF
    <p>Aims: DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. In addition, DDX3 was shown to be a direct downstream target of HIF-1α (the master regulatory of the hypoxia response) in breast cancer cell lines. However, the relation between DDX3 and hypoxia has not been addressed in human tumors. In this paper, we studied the relation between DDX3 and the hypoxic responsive proteins in human breast cancer.</p> <p>Methods and Results: DDX3 expression was investigated by immunohistochemistry in breast cancer in comparison with hypoxia related proteins HIF-1α, GLUT1, CAIX, EGFR, HER2, Akt1, FOXO4, p53, ERα, COMMD1, FER kinase, PIN1, E-cadherin, p21, p27, Transferrin receptor, FOXO3A, c-Met and Notch1. DDX3 was overexpressed in 127 of 366 breast cancer patients, and was correlated with overexpression of HIF-1α and its downstream genes CAIX and GLUT1. Moreover, DDX3 expression correlated with hypoxia-related proteins EGFR, HER2, FOXO4, ERα and c-Met in a HIF-1α dependent fashion, and with COMMD1, FER kinase, Akt1, E-cadherin, TfR and FOXO3A independent of HIF-1α.</p> <p>Conclusions: In invasive breast cancer, expression of DDX3 was correlated with overexpression of HIF-1α and many other hypoxia related proteins, pointing to a distinct role for DDX3 under hypoxic conditions and supporting the oncogenic role of DDX3 which could have clinical implication for current development of DDX3 inhibitors.</p&gt

    A Note on False Positives and Power in G × E Modelling of Twin Data

    Get PDF
    The variance components models for gene–environment interaction proposed by Purcell in 2002 are widely used. In both the bivariate and the univariate parameterization of these models, the variance decomposition of trait T is a function of moderator M. We show that if M and T are correlated, and moderator M is correlated between twins as well, the univariate parameterization produces a considerable increase in false positive moderation effects. A simple extension of this univariate moderation model prevents this elevation of the false positive rate provided the covariance between M and T is itself not also subject to moderation. If the covariance between M and T varies as a function of M, then moderation effects observed in the univariate setting should be interpreted with care as these can have their origin in either moderation of the covariance between M and T or in moderation of the unique paths of T. We conclude that researchers should use the full bivariate moderation model to study the presence of moderation on the covariance between M and T. If such moderation can be ruled out, subsequent use of the extended univariate moderation model, as proposed in this paper, is recommended as this model is more powerful than the full bivariate moderation model

    Detecting Specific Genotype by Environment Interactions Using Marginal Maximum Likelihood Estimation in the Classical Twin Design

    Get PDF
    Considerable effort has been devoted to the analysis of genotype by environment (G × E) interactions in various phenotypic domains, such as cognitive abilities and personality. In many studies, environmental variables were observed (measured) variables. In case of an unmeasured environment, van der Sluis et al. (2006) proposed to study heteroscedasticity in the factor model using only MZ twin data. This method is closely related to the Jinks and Fulker (1970) test for G × E, but slightly more powerful. In this paper, we identify four challenges to the investigation of G × E in general, and specifically to the heteroscedasticity approaches of Jinks and Fulker and van der Sluis et al. We propose extensions of these approaches purported to solve these problems. These extensions comprise: (1) including DZ twin data, (2) modeling both A × E and A × C interactions; and (3) extending the univariate approach to a multivariate approach. By means of simulations, we study the power of the univariate method to detect the different G × E interactions in varying situations. In addition, we study how well we could distinguish between A × E, A × C, and C × E. We apply a multivariate version of the extended model to an empirical data set on cognitive abilities

    COMMD1-Mediated Ubiquitination Regulates CFTR Trafficking

    Get PDF
    The CFTR (cystic fibrosis transmembrane conductance regulator) protein is a large polytopic protein whose biogenesis is inefficient. To better understand the regulation of CFTR processing and trafficking, we conducted a genetic screen that identified COMMD1 as a new CFTR partner. COMMD1 is a protein associated with multiple cellular pathways, including the regulation of hepatic copper excretion, sodium uptake through interaction with ENaC (epithelial sodium channel) and NF-kappaB signaling. In this study, we show that COMMD1 interacts with CFTR in cells expressing both proteins endogenously. This interaction promotes CFTR cell surface expression as assessed by biotinylation experiments in heterologously expressing cells through regulation of CFTR ubiquitination. In summary, our data demonstrate that CFTR is protected from ubiquitination by COMMD1, which sustains CFTR expression at the plasma membrane. Thus, increasing COMMD1 expression may provide an approach to simultaneously inhibit ENaC absorption and enhance CFTR trafficking, two major issues in cystic fibrosis

    Bcl-2 Regulates HIF-1α Protein Stabilization in Hypoxic Melanoma Cells via the Molecular Chaperone HSP90

    Get PDF
    Hypoxia-Inducible Factor 1 (HIF-1) is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1alpha, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF)-mediated tumour angiogenesis.By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1alpha protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1alpha protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1alpha protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1alpha stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1alpha degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1alpha protein. We also showed that bcl-2, HIF-1alpha and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1alpha protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1alpha protein during hypoxia, and in particular the isoform HSP90beta is the main player in this phenomenon.We identified the stabilization of HIF-1alpha protein as a mechanism through which bcl-2 induces the activation of HIF-1 in hypoxic tumour cells involving the beta isoform of molecular chaperone HSP90

    Protein C anticoagulant system—anti-inflammatory effects

    Get PDF
    Activated protein C (APC) plays active roles in preventing progression of a number of disease processes. These include thrombosis due to its direct anticoagulant activity which is likely augmented by its cytoprotective activity, thereby limiting exposure of procoagulant cellular membrane surfaces on cells. Beyond that, the pathway signals the cells to prevent apoptosis, to dampen inflammation, to increase endothelial barrier function, and to selectively downregulate some genes implicated in disease progression. Most of these functions are manifested to APC binding to endothelial protein C receptor (EPCR) allowing PAR1 activation, but activation of other PARS is also implicated in some cases. In addition to EPCR orchestrating these changes, CD11b is also capable of supporting APC signaling. Selective control of these pathways offers potential in new therapeutic approaches to disease

    Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study

    Get PDF
    Background: The strategy of watch and wait (W&W) in patients with rectal cancer who achieve a complete clinical response (cCR) after neoadjuvant therapy is new and offers an opportunity for patients to avoid major resection surgery. However, evidence is based on small-to-moderate sized series from specialist centres. The International Watch & Wait Database (IWWD) aims to describe the outcome of the W&W strategy in a large-scale registry of pooled individual patient data. We report the results of a descriptive analysis after inclusion of more than 1000 patients in the registry. Methods: Participating centres entered data in the registry through an online, highly secured, and encrypted research data server. Data included baseline characteristics, neoadjuvant therapy, imaging protocols, incidence of local regrowth and distant metastasis, and survival status. All patients with rectal cancer in whom the standard of care (total mesorectal excision surgery) was omitted after neoadjuvant therapy were eligible to be included in the IWWD. For the present analysis, we only selected patients with no signs of residual tumour at reassessment (a cCR). We analysed the proportion of patients with local regrowth, proportion of patients with distant metastases, 5-year overall survival, and 5-year disease-specific survival. Findings: Between April 14, 2015, and June 30, 2017, we identified 1009 patients who received neoadjuvant treatment and were managed by W&W in the database from 47 participating institutes (15 countries). We included 880 (87%) patients with a cCR. Median follow-up time was 3·3 years (95% CI 3·1–3·6). The 2-year cumulative incidence of local regrowth was 25·2% (95% CI 22·2–28·5%), 88% of all local regrowth was diagnosed in the first 2 years, and 97% of local regrowth was located in the bowel wall. Distant metastasis were diagnosed in 71 (8%) of 880 patients. 5-year overall survival was 85% (95% CI 80·9–87·7%), and 5-year disease-specific survival was 94% (91–96%). Interpretation: This dataset has the largest series of patients with rectal cancer treated with a W&W approach, consisting of approximately 50% data from previous cohort series and 50% unpublished data. Local regrowth occurs mostly in the first 2 years and in the bowel wall, emphasising the importance of endoscopic surveillance to ensure the option of deferred curative surgery. Local unsalvageable disease after W&W was rare. Funding: European Registration of Cancer Care financed by European Society of Surgical Oncology, Champalimaud Foundation Lisbon, Bas Mulder Award granted by the Alpe d'Huzes Foundation and Dutch Cancer Society, and European Research Council Advanced Grant

    Perioperative events influence cancer recurrence risk after surgery.

    Get PDF
    Surgery is a mainstay treatment for patients with solid tumours. However, despite surgical resection with a curative intent and numerous advances in the effectiveness of (neo)adjuvant therapies, metastatic disease remains common and carries a high risk of mortality. The biological perturbations that accompany the surgical stress response and the pharmacological effects of anaesthetic drugs, paradoxically, might also promote disease recurrence or the progression of metastatic disease. When cancer cells persist after surgery, either locally or at undiagnosed distant sites, neuroendocrine, immune, and metabolic pathways activated in response to surgery and/or anaesthesia might promote their survival and proliferation. A consequence of this effect is that minimal residual disease might then escape equilibrium and progress to metastatic disease. Herein, we discuss the most promising proposals for the refinement of perioperative care that might address these challenges. We outline the rationale and early evidence for the adaptation of anaesthetic techniques and the strategic use of anti-adrenergic, anti-inflammatory, and/or antithrombotic therapies. Many of these strategies are currently under evaluation in large-cohort trials and hold promise as affordable, readily available interventions that will improve the postoperative recurrence-free survival of patients with cancer
    corecore