28 research outputs found

    Automated data analysis to rapidly derive and communicate ecological insights from satellite-tag data: A case study of reintroduced red kites

    Get PDF
    Analysis of satellite-telemetry data mostly occurs long after it has been collected, due to the time and effort needed to collate and interpret such material. Such delayed reporting does reduce the usefulness of such data for nature conservation when timely information about animal movements is required. To counter this problem we present a novel approach which combines automated analysis of satellite-telemetry data with rapid communication of insights derived from such data. A relatively simple algorithm (comprising speed of movement and turning angle calculated from fixes), allowed instantaneous detection of excursions away from settlement areas and automated calculation of home ranges on the remaining data Automating the detection of both excursions and home range calculations enabled us to disseminate ecological insights from satellite-tag data instantaneously through a dedicated web portal to inform conservationists and wider audiences. We recommend automated analysis, interpretation and communication of satellite tag and other ecological data to advance nature conservation research and practice

    Taxonomic and Geographic Bias in Conservation Biology Research: A Systematic Review of Wildfowl Demography Studies.

    Get PDF
    Demographic data are important to wildlife managers to gauge population health, to allow populations to be utilised sustainably, and to inform conservation efforts. We analysed published demographic data on the world's wildfowl to examine taxonomic and geographic biases in study, and to identify gaps in knowledge. Wildfowl (order: Anseriformes) are a comparatively well studied bird group which includes 169 species of duck, goose and swan. In all, 1,586 wildfowl research papers published between 1911 and 2010 were found using Web of Knowledge (WoK) and Google Scholar. Over half of the research output involved just 15 species from seven genera. Research output was strongly biased towards 'high income' countries, common wildfowl species, and measures of productivity, rather than survival and movement patterns. There were significantly fewer demographic data for the world's 31 threatened wildfowl species than for non-threatened species. Since 1994, the volume of demographic work on threatened species has increased more than for non-threatened species, but still makes up only 2.7% of total research output. As an aid to research prioritisation, a metric was created to reflect demographic knowledge gaps for each species related to research output for the species, its threat status, and availability of potentially useful surrogate data from congeneric species. According to the metric, the 25 highest priority species include thirteen threatened taxa and nine species each from Asia and South America, and six from Africa
    corecore